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1 Introduction

Over the course of my REU, I studied characterizations of reduced words of (p, q)−clans, which

have analogous properties to reduced words of permutations and reduced words of involutions. I

determined a characterization of equivalence classes of reduced words. I also found a characteri-

zation for reduced words in the W−sets of arbitrary matchless (p, q)−clans. I investigated finding

the (p, q)−clan with the most reduced words and came up with numerical data and conjectures.

2 Preliminaries

Definition 1. Define a (p, q)-clan to an involution in Sn, where with each fixed point we associate

a ”+” or a ”−”, such that n = p + q and the total charge is p− q.

Example 1. 1+43+2 is a (3, 1)-clan.

Clans may also be represented by their matchings and signed fixed points, e.g., the clan 1+43+2

is described by (2, 4), (1+), (3+),.

Definition 2. Define elementary switches si to be a unary operation on (p, q)-clans such that:

• If in clan C, i and i + 1 are opposite signed fixed points, siC is the same clan, except i and

i + 1 are matched.

• If in clan C, i is a fixed point and i+ 1 is matched with k, k > i, siC is the same clan, except

k and i are matched, i + 1 is a fixed point whose sign is the sign of i in the clan C,

• If in clan C, i+ 1 is a fixed point and i is matched with k, k < i, siC is the same clan, except

k and i + 1 are matched, and i is a fixed point whose sign is the sign of i + 1 in the clan C,

• If in clan C, i is matched to j and i + 1 is matched to k, k > i, siC is the same clan, except

i is matched with k and i + 1 is matched with j.

Taking the relation siC > C and its transitive closure, we get arrive at a poset structure on

(p, q)-clans, with unique maximal element M =

(1, n), (2, n− 1) · · · , (p, q + 1), p + 1−, p + 2−, · · · q−

if q ≥ p and

(1, n), (2, n− 1) · · · , (q, p + 1), q + 1+, q + 2+, · · · p+

otherwise.
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Definition 3. Define a reduced word of a (p, q) − clan C to be a sequence sa1 , sa2 , · · · , san of

minimal length, such that M = sai · · · sa2sa1C.

Example 2. s1s3s2s3 is a reduced word for the clan +−−+

2.1 Permutations/W-sets

Then the elementary switches satisfy the coxeter relations: that is,

sisjC = sjsiC if |i− j| > 1 for any clan C, and

sisjsiC = sjsisjC if |i− j| = 1 for any clan C

.

Because of this, we may correspond reduced words with permutations: we let the reduced word

sa1 , sa2, · · · sai to correspond the permutation sa1sa2 · · · sai , where the product is evaluated right

to left by convention. Thus the word s1s3s2s3 corresponds to the permutation 2431. Then if any

reduced word of a permutation w is a reduced word for a clan C, all reduced words of w are reduced

words for C.

It’s now natural to define the W − set of a clan C.

Definition 4. Define the W−set of a clan C (to be the set of permutations w such that reduced

words of w are reduced words of C.

Algorithm 2.20 in [1] allows us to generate W -sets. Throughout this paper I will use it repeat-

edly.

3 My Work

3.1 The equivilence relation and shapes with labellings

Given a reduced word of a clan C, all other reduced words corresponding to the same permutation

must be reduced words of C. Then, we are motivated to ask: given a permutation w is in the

W -set of C, what other permutations must also be in C’s W -set?

Definition 5. Define an equivalence relation ≡ on permutations to be

v ≡ w if and only if ∀C v ∈W (C) ⇐⇒ w ∈W (C)

Definition 6. Define the labelled shape of a permutation as follows: while implementing the

algorithm in [1], keep track of which +’s and -’s are paired. On the ith step, if you pick an arc,

label it with an i. If you pick a + and a −, pair their locations and label the pair with i. (Note:

the pairing does not keep track of which fixed point was a + and which was a −)

We distinguish between arcs and paired fixed points by underlining the paired fixed points.

Note labelled shapes are in one-to-one correspondence with algorithm implementations and hence

permutations. Also note unpaired fixed points’ sign.

Example 3. In the clan +−−+, with the permutation 2431, we get the labelled shape (1, 2)1, (3, 4)2

From the algorithm, we must satisfy the following conditions:
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1. Given paired fixed points (a, b)i, (c, d)j , we may not have a < c < b < d.

2. Additionally, for paired fixed points (a, b)i, (c, d)j , if i < j, we may not have a < c < d < b.

3. Furthermore, given paired fixed points (m,n), any fixed point p with m < p < n must be

paired.

4. Given two matchings, one nested in the other, the outer matching must be labelled with the

lower number.

5. Finally, no unpaired fixed point p satisfies a < p < b for fixed points (a, b)i paired.

Definition 7. Define an unlabelled shape to be a labelled shape after removing the labels.

To determine which clans a permutation w is in the W -set of, we may take w’s unlabelled shape,

and then assign +’s and −’s to the paired fixed points, such that within each pair one fixed point

receives a + and one a −. Then each distinct assignment of signs corresponds to a clan which w is

in the W -set of.

Theorem 1. w ≡ v if and only if w and v have the same unlabelled shape.

First, we prove contrapositive of the only if direction. Suppose w and v have different unlabelled

shapes.

Case 1: Let (a, b) be a matching in w’s shape but not v’s. Then they must be in the W -sets

different clans, as every clan corresponding with w in its W -set will have (a, b) as a matching but

no clan with v in its W -set will.

Case 2: Let (a, b) be paired fixed points in w’s shape but not v’s.

Case 2a: If a or b is not a fixed point for v, we’re done, as the property of being a fixed point

of a clan is preserved when taking shapes.

Case 2b: If at least one of a and b, WLOG a, is unpaired in v’s shape. Also WLOG, suppose

it is a+. Then w is in the W -set of a clan with a− and b+ as fixed points, but v is not.

Case 2c: If both a and b are paired fixed points (say with c and d, respectively), v is in the

W -set of a clan which has a and b as fixed points both with +’s associated, while w is not.

Now, we prove the the if direction. Suppose w and v have the same unlabelled shape. Then

w and v have the same matchings and the same pairings of fixed points. Thus, any choice of +’s

and −’s for w’s paired fixed points may be copied for v’s paired fixed points, and vice versa. This

completes the proof.

Theorem 2. ≡ is the transitive closure of the Coxeter relations and the relation

wsi ∼ wsn−i, 1 ≤ i ≤ min(p, q)− 1 (1)

Note: In terms of labelled shapes, wsi wsn−i corresponds to being able to switch labels i and

i + 1, assuming that this leaves an allowed labelling for a shape. (Note that in terms of permuta-

tions, this relation can be written as v ∼ vsisn−i as long as the reduced words are the same length

which is true iff vsisn−i is in the W -set which is true iff switching i and i + 1 gives an allowed

labelling.)
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Proof: define a function f of a labelled shape:

f(w) = |{((a, b)i, (c, d)j) : i < j, b > d}|+ |{(a, b)i, (c, d)j) : i < j, a > c}|+
∑
(a,b)k

k

.

Then, within all possible labelings of a shape, this function is minimized at the unique labelled

shape where the m matchings have labels 1 through m and the two other sets are empty. Clearly

this is a lower bound. To see why it is achievable and unique, note that |{((a, b)i, (c, d)j) : i < j, a >

c}| = 0 uniquely determines the labels of paired fixed points (when ordered by right fixed point,

the labels must be increasing). Similarly, |{(a, b)i, (c, d)j) : i < j, a > c}| = 0 implies that when

matchings are ordered by left endpoint, the labels must be increasing. Furthermore, this labelling

satisfies all conditions for labelled shapes.

Now suppose we have a labelling which does not minimize f . I show we may switch the labels

i and i + 1 for some i to decrease f .

Case 1: the labels of matchings are not all less than the labels of paired fixed points. Then

let i be such that i is the label of a pairing, and i + 1 is the label of a matching. Then we may

switch the labels i and i+1 without violating any conditions on labelings. Then f is decreased by 1.

Case 2: There exist pairings (a, b)k, (c, d)j : k < j, b > d. Then there exist pairings (m,n)i, (x, y)i+1 :

n > y. Then we may swap the labels i and i + 1, decreasing f by 1.

Case 3: There exist matchings (a, b)k, (c, d)j) : k < j, a > c. Then there exist matchings

(m,n)i+1, (x, y)i) : m > x. Then we may swap the labels i and i + 1 to get another allowed la-

belling, decreasing f by 1.

By applying applying process repeatedly, we must eventually reach the minimal clan, which

proves the ∼ connects permutations in the equivalence classes of ≡, and hence ≡ is the transitive

closure of ∼ and the Coxeter relations.

3.2 Codes

Now, one might ask: given a clan C, which equivalence classes make up W (C)?

Definition 8. Define the code of a labelled shape of a matchless (p,q)-clan C to be a list of length

max(p, q) in the following way:

For i < min(p, q), let ai be the left endpoint of the pairing with label i. Let bi be the number

of paired fixed points less than ai whose label is less than i. Let s be the sign of ai. Then the ith

entry of the code is (ai− bi)
s. The last |p− q| entries of the code are all signs: +’s if p > q and −’s

otherwise.

Codes are in 1-to-1 correspondence with labelled shapes of clans (and hence pairs of permuta-

tions and clans (w,C) with w ∈ W (C): to recover the labelled shape and clan from its code, the

following algorithm may be used.

Let k(i)s(i) be the ith entry of a code K. On the ith step, pair the k(i)th and k(i) + 1st fixed

points (counting from the left) not paired in previous steps. Let the s(i) be the sign of the left
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just-paired fixed point (and −s(i) be the sign of the right just-paired fixed point). The sign of the

|p− q| unpaired fixed points is determined by the sign of the final entries of the code.

Note the ith entry in a code of a (p, q)-clan C is at most p + q + 1 − 2i. Furthermore, this

condition is sufficient for a list of length p + q with |p− q| signs of the appropriate type at the end

to be the code of a labelled shape.

Definition 9. Define the following equivalence relation on codes: c ' d if and only if c and d are

codes for the same clan.

Note the following relations:

1.

(· · · , isi , jsj , · · · ) ' (· · · , j + 2sj , isi , · · · ) if i− j ≥ 2.

In terms of labelled shapes, this says swapping the labels k and k+ 1 (where k is the location

of i in the code) maintains equivalence (assuming after swapping the labels we still have an

allowed labelled shape). This is the same as equation (1) in 2.1.

2.

(· · · , is, is, · · · ) ' (· · · , (i + 1)−s, is, · · · ).

In terms of labelled shapes, this corresponds to taking the labelled pairs (a, b)k, (c, d)k+1 and

changing them to (b, c)k, (a, d)k+1 (with a < b < c < d) being equivalent, as long as the signs

of the fixed points permit such pairings (again where k is the left shown location in the code).

3.

(· · · , i + 1−s, s, · · · ) ' (· · · , is, s, · · · ).

In terms of labelled shapes, this relation corresponds to taking the paired fixed points with

the smallest label, and changing which fixed points are paired. If, for example, the unpaired

fixed points have positive sign, this relation corresponds to pairing − with the + on its right

being equivalent pairing it with the + on its left.

Theorem 3. ' is the transitive closure of these relations.

First, we prove that, given labelled shapes C and D with the same unlabelled shapes, relation

1 is enough to show C ' D.

Suppose labelled shape C has the unlabeled shape S with k pairings. We may associate a

permutation w ∈ Sk with C, where w(i) is defined to be the position of the pair with label i,

when pairs are ordered by their right endpoint. Then distinct labellings of the same shape have

distinct associated permutations. Out of all possible permutations, one is first lexicographically.

Furthermore, it’s not hard to see that, for every shape, there exists a labelling of that shape with

the identity permutation associated to it.

Second, we prove that for every labelled shape C with unlabeled shape S and associated per-

mutation w not the identity, there is another labelling D of S with associated permutation v, such

that v is before w in lexicographic ordering, and C ' D by relation 1.
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Since w is not the identity, it contains at least one inversion. That is, there exists i such that

w[i] > w[i + 1]. From the definition of w, it must be the case that in labelled shape C, the right

endpoint of the pair with label i + 1 is left of the right endpoint of the pair with label i. Then if

we switch labels i and i + 1, we still get an allowed labelling. Letting D be the labelling attained

by applying this switch (and v its associated permutation), we have C ' D by relation 1, and v is

before w lexicographically. Then we’re done, since lexicographic ordering is a finite ordering.

Third, we prove that, given two labelled shapes C and D with the same unpaired fixed points,

relations 1 and 2 are enough to show C ' D. We will show this by a similar method, picking

a finite ordering and showing for every labelled shape C with some fixed points not first in the

ordering, C is related to another labelled shape D by relations 1 and 2, where D is before C in the

ordering.

Fix a (p, q)-clan, and set of unpaired fixed points F (with |F | = |p− q|). It suffices to show the

statement is true for (p,q)-clans where p = q, since no paired fixed points have an unpaired fixed

point between them. (A corollary: between unpaired fixed points are equal numbers of positive

and negative paired fixed points.)

Order the paired fixed points of an unlabelled shape for a (p, p)-clan by their left endpoints,

and with each unlabelled shape S associate a word zS , where zS(i) is |a− b|, where (a+, b−) is the

ith pair. Then consider a total ordering on shapes of a fixed (p, q)-clan to be the lexicographic

ordering on words.

Now, note that the shape corresponding to (· · · , (i + 1)−s, is, · · · ) is later than the shape cor-

responding to (· · · , is, is, · · · ) in this ordering. Thus, it suffices to show that, for every shape not

minimal in lexicographic ordering, the shape has a labelling whose code of the form

(· · · , (k + 1)−t, kt, · · · ),

as then it is related to a code whose shape is earlier in the ordering.

Now, let the minimal shape of a (p, p)-clan be M . Fix a (p, p)-clan C whose shape is not M .

Let a be minimal such that (al, b−l) is a fixed point pair in M , and (al, b′−l) is a fixed point pair

in C, with b′ > b > a. Then, notice in the set of fixed points {a + 1, · · · , b} exactly one more fixed

point has sign −l than sign l. Thus, in clan C, at least one fixed point a < d ≤ b with sign −l is

paired with el for some e > d.

Let d′ be the minimum such fixed point, and let its pair (in C) be (d′−l, e′l). Now let j′ be the

maximum j < d such that j is paired with k for some k > e′. (let k′ be the fixed point j is paired

with.) Note j′ exists, as j = a works. Thus by the minimality of d′, the sign of j′ is l, and hence

the sign of k′ is −l.

Finally, note that we may, when applying the algorithm in https://arxiv.org/pdf/1409.4227.pdf,

select (d′−l, e′l) nth, and (j′l, k′−l) n + 1th, where n is the number of paired fixed points (xt, y−t) :

j′ < x < y < k′ Then, by applying the algorithm in this way, we end up with a code containing

(· · · , j′ + 1−l, j′l, · · · )
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(nth and n + 1th locations in the code shown), which is of the desired form.

We have now shown that if two (p, q)-clans have the same unpaired fixed points, they are related

by the closure of relations 1 and 2.

Suppose we have two shapes of a (p, q)-clan C, X and Y . Without loss of generality, assume,

p > q. Let the unpaired fixed points of X be (x1, x2, · · ·xp−q), and Y ’s be (y1, · · · yp−q), both in

increasing order. Let m ≤ q + 1 be maximal such that xk = yk for all k ≤ m− 1. Also without loss

of generality, assume ym < xm. We prove X and Y are related by induction on p − q −m. The

base case, where q −m = −1, is clear: X and Y then have the same unpaired fixed points.

Assume by strong induction the statement is true for q −m < q − n (i.e., m > n). We must

prove it when q −m = q − n, i.e. n = m.

I claim the exists a labelled shape A with unpaired fixed points (x1, · · · , xp−q) which is related

to a labelled shape B with unpaired fixed points (x1, x2, · · · , xn−1, yn, xn+1, · · · , xp−q) by relation 3.

We apply the algorithm in [1] in order to find labelled shapes A and B, first pairing fixed points

between x1 and xn−1, and then fixed points between xn+1 and xp−q, making the same choices at

every step for the labelings of A and B. Since X and Y are shapes for C, there must also be an

equal number of fixed points of each sign in C between xn−1 and yn, and between xn and xn+1.

Also, between yn and xn inclusive, we must have one more positive fixed point than negative. We

then continuing applying the algorithm to fixed points between xn−1 and yn, and then between xn
and xn+1, pairing points between xn−1 and yn only with each other (and similar between xn and

xn+1) until all such points have been paired. Note we may again make the same choices at each

stage for A and B.

Then we continue applying the algorithm to get the labelled shape A, following the condition

that we pair yn last. Note this is possible; there’s at least one positive and one negative not-yet-

paired fixed point among (yn + 1, · · ·xn+1 − 1 unless xn+1 − 1 was the only positive not-yet-paired

fixed point, and among any list containing both pluses and minuses, there’s a plus and minus adja-

cent to each other. Until the last step, we apply the algorithm in the same way to get the labelled

shape B. We have one fixed point left: k−. To finish the algorithm for labelled shape A, we paired

k with yn. To finish the algorithm for labelled shape B, pair k with xn.

Then the codes for the chosen labelings A and B are related by relation 3.(A’s is (· · · , n+,+, · · · )
while B’s is (· · · , n + 1−,+, · · · )) Since B and Y share the same first n unpaired fixed points, by

induction B and Y are related. Thus X ' A ' B ' Y , so the induction is complete.

4 A Conjecture

I also considered the following question: Fixing p and q, which (p, q)-clan has the most reduced

words? The answer must be a matchless clan, and the number of reduced words n(C) of a matchless

clan C is be given nicely (this is part known, not a conjecture) by the following:
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Define +C be the set of positive fixed points of C, and defining −C similarly, Then

n(C) =
(pq)!∏

a∈+C ,b∈−C
|a− b|

Conjecture 1. Let d1 < · · · < dp be the locations of the positive fixed points in the (p,q)-clan

with the most reduced words. Let e1 < · · · < ep be the locations of the positive fixed points in the

(p,q+1)-clan with the most reduced words. Then

di ≤ ei ≤ di + 1 for all i.

I attempted to find a proof and wrote a program to gather numerical evidence. Though I found

interesting lemmata, ultimately the problem remains unsolved.
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