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1 Introduction

Matching sets of points in 3D point clouds and aligning images are problems that are common to
robotics, GIS, and medical imaging. The transformations resulting from the alignments can aid in
areas ranging from robot localization to the measuring of what has changed between images, such
as landscape developments or the healing after a surgery. The main contribution of this work is the
implementation of an algorithm to find parameterized nonrigid transformations with the property
being close to an isometry, that is, a rigid transformation. This algorithm is first formulated for
labeled point clouds and then extended to the unlabeled case.

2 Related Works

The problem of finding a rigid transformation to align two sets of labeled points is well studied and
known as the Procrustes problem. Having labeled point sets lacking an exact rigid transformation
between them is a scenario that frequently arises from applying feature detectors to some underlying
scene. The correspondences created by the detector may contain noise in the position of detected
points, preventing a rigid transformation. In the case where noise in labeling is a larger problem,
this scenario may be handled by RANSAC or other probabilistic methods [1, 2]. For handling the
noise in points’ position rather than labels, the proposed method may be used here to find a nearly
rigid transformation. When we have unlabeled points and wish to find a nonrigid transformation,
methods can largely be categorized as Iterative Closest Point (ICP) or energy based. Methods of the
ICP family iteratively determine point correspondences and use those to determine a transformation
[3, 4]. Energy based methods model the transformation of pixels or voxels as fluids and aim to
minimize the energy of the system [5, 6, 7].

3 Framework

Let P = {pi}N1 and Q = {qi}N1 be point sets of corresponding points in RD. The goal of the
Procrustes problem is to find Φ : RD → RD such that:

∀i Φ(pi) = qi.
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where Φ is a rigid motion, that is, Φ(x) = Rx+ t, R ∈ SO(D), and t ∈ RD. For cases where there
is noise in the points measured after a rigid transformation, or when the underlying transformation
itself is nonrigid, we can instead aim to find a Φ specifying a nonrigid transformation by minimizing
the Euclidean distance between points. In order to prevent overfitting we can include a smoothing
term controlled by an adjustable parameter λ that will enforce smoothness in the transform. We
can then search for Φ such that:

Φ∗ = argmin
Φ

∑
i

(Φ(pi)− qi)2 +
λ

N2

∑
i<j

(
‖Φ(pi)− Φ(pj)‖
‖pi − pj‖

− 1

)2

Here ‖·‖ denotes the L2 norm. The smoothing term checks that the transformation preserves
pairwise distances, and the N is used to normalize for the number of points. The smoothing term
also follows from the work in [8], to ensure that the transformation is almost a rigid motion. We
now present different parameterizations of Φ.

Nonrigid Rotations in 2D

We first define the matrix that effects the nonrigid portion of the rotation:

S(x) =

(
cos(f(x)) sin(f(x))
− sin(f(x)) cos(f(x))

)
where f is chosen such that ∀t ∈ R ‖tf ′(t)‖ < cε for some scalar c [8]. Throughout the rest of this
paper, an admissible function f is chosen to be:

f(x; c) = c
√

log (1 + x)

The nonrigid rotation can then be written as:

ΦR(x;µ, c) = RTµS(‖x‖)x

where Rµ ∈ SO(2) and Rµ is parameterized by the angle µ.

Nonrigid Translations in 2D

Translations can be parameterized with:

ΦT (x; c1, c2) = x+ T (‖x‖), T (x) =

(
g1(x)
g2(x)

)
where similar to f in ΦR, each gi is chosen such that ∀t ∈ R ‖g′i(t)‖ < ciε for some scalar ci [8].
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Compositions

In order to effect both a rotation and a translation, we can set:

ΦC(x;µ, cr, ct1, ct2) = ΦT ◦ ΦR(x).

Multiple Centers of Nonrigidity

Since the previous Φ are all centered at the origin we can modify the parameterization to handle
multiple centers that may not be at the origin. To shift the centers we can use:

ΦSC(x;µ, cr, ct1, ct2, c1, c2) = RTµS(‖x− c‖)x+ T (‖x− c‖).

Note that the addition of c adds two dimensions to the search space of the optimization routine.
Now incorporating multiple centers, the equation becomes:

ΦMC(x) = ΦSC1 ◦ · · · ◦ ΦSCM
(x).

An example of a transformation with multiple centers is shown in figure 1. The points in R2 are
transformed to a greater degree near the centers of nonrigidity. Farther away from the centers, the
nonrigid effect decays into to a rigid transform. This can be useful for applying nonrigidity to only
a small area in the point set. When the function effecting the nonrigid rotation is parameterized
with a small c, the amount of nonrigidity is smaller. In figure 2, the effect of a larger c is shown.

4 Optimization

Since the proposed Φ are parameterized, we may write the formula as the minimization over those
parameters, and solve the problem via a standard optimization routine (such as L-BFGS). It was
found that the O(N2) time needed to calculate the smoothing term was by far the most time
consuming part of the the process, so the term was instead approximated. For every point, instead
of calculating the pairwise distances to each of the other points, the distances to k other points
were uniformly randomly picked. The normalization term is changed correspondingly, becoming
kN . Using k = 4 for each of the following experiments was found to be much faster.

5 Extension to the Unlabeled Case

We can extend the method to the unlabeled case by working with pixel or voxel values rather than
their coordinates in the point set. Let an image I be defined as I : RD → RK . For example, an RGB
image would map from pixel coordinates in R2 to values in R3. In this setting, a transformation Φ
modifies a source image Ip such that Ip ◦Φ = Iq, with Iq being the destination image. Given source
and destination images Ip and Iq, we can write the new optimization problem as:
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Figure 1: Nonrigid rotations with multiple centers. The original points in R2 (left) are rotated,
and closer to the centers pulled inwards (right). The parameters used to produce each center are:
(0.23, 0.35, -15, 0, 0, 0), and (0, 0.1, 0, 0, 170, 20).

Φ∗ = argmin
Φ

∑
i

(Ip(pi)− Iq(Φ−1(pi)))2 +
λ

N2

∑
i<j

(
‖Φ(pi)− Φ(pj)‖
‖pi − pj‖

− 1

)2

Here, the pixel values between the source image and the destination image transformed to match
the source are compared for all coordinates pi of the source image. In practice, Φ−1 may map
a pixel coordinate to a coordinate between pixels in the mapped-to image. The value at that
point can then be interpolated from nearby pixel values. We use bicubic interpolation in all of the
evaluations.

This new formulation can be susceptible to local minima. In order to improve convergence, a coarse
to fine regime is used. Rather than immediately finding Φ∗ for the original image pair, Φ∗ is first
found for blurred versions of the original images. This Φ∗ is used as the starting point for the next
optimization, which finds Φ∗ for a less blurry pair. This iteration continues until Φ∗ for the original
image pair is found. Gaussian blur with successive kernel sigmas of 5, 4, 3, and 1.5 are used in the
evaluations.

6 Evaluation

For both the labeled and the unlabeled problems, we compare the proposed methods to rigid
motions in the sum of squared errors (SSE) over the pixel values of the rectified transformed image
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Figure 2: Nonrigid rotations with multiple centers. The original points in R2 (left) are transformed
with two centers of nonrigidity (right). The blue center’s greater nonrigidity than the red center
pulls the points from farther away, creating a sort of bend in the sheet of points. The parameters
used to produce each center are: (0.23, 1.33, -15, 0, 0, 0), and (0, 0.1, 0, 0, 170, 20).

and the original image pairs. The nonrigid transformations used for the evaluations consist of two
centers and smoothed with a λ of 1.

6.1 Point Cloud Based Registration

Each pixel coordinate in the image lending itself to a point, we first construct the transformed image
with a known transformation on the coordinates to obtain the point cloud after the transformation.
The transformation learned between the two point clouds is then used to warp the images, allowing
for the calculation of the SSE. The results are shown in table 1. The rigid and nonrigid methods
produce fits with some difference in SSE, but looking at figures 4 and 5, we see that they perform
very similarly.

6.2 Pixel Based Unlabeled Registration

The unlabeled formulation works directly on the images here. In order to improve convergence, in
addition to the coarse to fine regime, the rigid transformation is applied before finding the nonrigid
transformation. The nonrigid registration method outperforms the rigid registration method, and
both outperform the methods applied to the labeled problem (table 1). Comparing figures 6 and
7, we see that the nonrigid transformation overcorrects for the deformity in the triangle in order
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Figure 3: Avoiding local minima with blur. From right to left, the Gaussian blur applied to the
original image is decreased until we are left with the original.

Figure 4: Rigid registration with point cloud information. The original image (center) is trans-
formed to the image on the right, and the corrected version of the transformed image is overlaid
on the original (left).

to match more pixels at the boundary of the image. This gain in boundary pixels offsets the larger
deformity in the triangle, explaining the decrease in SSE.

7 Conclusion

We presented a method for registering labeled point clouds with a nonrigid deformation, and
extended the formulation to the unlabeled setting for images. The nonrigid model is not fit as
easily as rigid transformations, but its additional flexibility allows it to achieve lower registration
error. Future avenues of research could include the use of specialized optimization techniques to
improve the fitting process, and an automated method of determining the optimal number of centers
used in the nonrigid transformations.
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Figure 5: Nonrigid registration with point cloud information. The original image (center) is
transformed to the image on the right, and the corrected version of the transformed image is
overlaid on the original (left).
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