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Abstract. We investigate the syzygies of the Segre embedding, by associating
them with simplicial complexes. Using these complexes, we prove that the
module of second syzygies is generated in degree 3, a familiar result from
homology. We also prove a partial result about the module of third syzygies,
and give explicit examples of nontrivial cycles in these complexes.

1. Background

1.1. The Segre Embedding.

Definition 1.1. Given n,m ∈ N, the Segre embedding is the function fn,m :

Pn(C)× Pm(C)→ P(n+1)(m+1)−1(C) given by

([x0 : · · · : xn] , [y0 : · · · : ym]) 7→ [x0y0 : · · · : x0ym : x1y0 : · · · : x1ym : . . . xnym]

We can generalize to more than 2 projective spaces.

Definition 1.2. Given n1, . . . nk ∈ N, the generalized Segre embedding is the
function fn1,...nk : Pn1 × · · · × Pnk → Ps given by

([a1,i]0≤i≤n1
, . . . [ak,i]0≤i≤n1

) 7→

[
k∏
i=1

ai,ji

]
(0,...0)≤(j1,...jk)≤(n1,...nk)

Here, s stands for
∏k
i=1(ni + 1)− 1 and the (j1, . . . jk) are ordered lexographically.

Definition 1.3. Given n1, . . . nk ∈ N, let xi,j : Cni+1 → C denote the function(
a0, a1, . . . an

)
7→ aj

The i indicates which projective space the function xi,j corresponds to. If n1 =
n2 = 2, x1,1 and x2,1 seem identical, but they operate on two different copies of C3.

Definition 1.4. The coordinate ring of the Segre embedding fn1,...nk is the
graded C-module generated by {

∏k
i=1 xi,ji}(0,...0)≤(j1,...jk)≤(n1,...nk).

Equivalently, the coordinate ring is the sum of all monomials in the xi,j , such the
total degree in {xm,j}1≤j≤nm is independent of m. (The grading is given by this
degree: henceforth I will just use the word degree.) For example, if n1 = n2 = 2,
the monomial (x1,1x2,2)(x1,2x2,2) = (x1,1x1,2)(x2

2,2) is in the coordinate ring, and
of degree 2. x1,1x

2
2,2 is not in the coordinate ring.

If a < b, then we can identify Pa with the subset of Pb such that the last b − a
homogeneous coordinates are zero. In a similar manner, if (∀i)(ni ≤ mi), then the
coordinate ring of fn1,...nk may be identified with a subset of the coordinate ring
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of fm1,...mk . Letting N = max{ni|1 ≤ i ≤ k}, the coordinate ring of the Segre
embedding fn1,...nk is effectively a subset of the coordinate ring of fN,...N , where
there are k N’s. Thus, it suffices to consider the case where n1 = n2 = · · · = nk.
From now on, Cn,k will denote the coordinate ring of fn,...n, where there are k n’s.
(Cn,k)d will denote the set of degree d elements of the coordinate ring.

Definition 1.5. LetMn,k,d ⊂ Matn×k(N∪{0}) denote the set of all n by k matrices
with non-negative entries, such that the sum of all entries in each column is d.

Theorem 1.6. There is a natural bijection φd between monomials in (Cn,k)d and
Mn,k,d. Multiplication of monomials corresponds to addition of matrices: if a ∈
(Cn,k)d and b ∈ (Cn,k)f , then φd+f (ab) = φd(a) + φf (b).

Proof. For (0, . . . 0) ≤ (a1, . . . ak) ≤ (n, . . . n), let

φ1

(
n∏
i=1

xi,ai

)
=
[
ea1 ea2 . . . eak

]
Then define φ on higher degree elements so that φd+f (ab) = φd(a) + φf (b). The
column sum condition on the matrices coincides with the equal degree condition on
the elements of the graded ring. For the inverse, the (i, j) element of the matrix
gives the exponent of xj,i. �

1.2. Syzygies and Minimal Free Resolutions. The following definitions come
from page 470 of [1] and page 3 of [2].

Definition 1.7. Given some graded R-module M , a free resolution of M is an
exact chain complex of free graded R-modules

F : . . . Fn
φn−−→ . . .

φ2−→ F2
φ1−→ F1

φ0−→ F0

such that the φi are homogenous maps of degree 0 and F0/ Im(φ0) ∼= M . The
module Im(φi) is called the module of ith syzygies of M (or, sometimes, the ith
syzygy module of M).

There is a natural bijection between the generators of Cn,k and elements of
{0, . . . n}k: if λ = (a1, . . . ak) ∈ {0, . . . n}k, let xλ =

∏n
i=1 xi,ai In contrast, let yλ

denote a formal symbol, and let S = C[yλ] be the ring generated by the yλ. Via
the natural homomorphism from S to Cn,k, we may regard Cn,k as an S-module.
Also, φ : Cn,k → S extends to a map φ̃ : S →Mn,k.

Example 2.6 of [2] provides a minimal free resolution of C.
Let ∆ be the simplicial complex with vertices labeled by the yλ. For a vertex v,

mv will denote the corresponding label: for a face A, let mA =
∏
v∈Amv.

Let Fi be the free S-module whose basis is the set of faces of ∆ having i vertices.
Then there is graded complex of free S-modules

C (∆) : . . . Fn
δn−→ Fn−1

δn−1−−−→ . . .
δ0−→ F0

The differential is given by δnA =
∑
v∈A (−1)

pos(n,A)
mv (A\{v}), where pos(n, A)

indicates the number of vertices of A preceding n in the ordering of the vertices.
Instead of grading by elements of Znk, as in [2], we grade by elements of Mn,k.

Definition 1.8. The matrix degree of gA is φ̃(gmA).
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Essentially, [2] assigns weight ei to the ith variable, whereas we assign weight
φ(xλ) to yλ. The boundary operators still are homogeneous maps of degree 0:
mv (A\{v}) and A have the same matrix degree. Hence for each ξ ∈ Mn,k, we get
an associated chain complex

C (∆)ξ : . . . (Fn)ξ
δn−→ (Fn−1)ξ

δn−1−−−→ . . .
δ0−→ (F0)ξ

where (Fi)ξ indicates the set of elements of Fi of matrix degree ξ.

Theorem 1.9. C (∆) is a minimal free resolution of C.

Proof. C (∆) is the Koszul complex of S, as described in Example 2.6 of [2]. (The
symbols in our polynomial ring S are indexed by {0, . . . n}k under lexographical
order, instead of natural numbers, but it’s otherwise it’s the same situation.) �

Now, we need a way to compute the syzygies from this free resolution.

Theorem 1.10. If F : · · · → F1 → F0 is a minimal free resolution of an S-module
M , then the ith syzygy of M has dimC(TorSi (C,M)j) generators of degree j (and
this set of generators is minimal).

Proof. This combines Corollary 1.5 and Proposition 1.7 of [2]. Applying Fi to
a minimal set of generators for Fi yields a minimal set of generators for the image
of di. di preserves degree: there are dimC(TorSi (C,M)j) generators of Fi of degree
j, so there are dimC(TorSi (C,M)j) generators of the image of di of degree j. �

Hence to compute the number of generators, we take the complex C (∆) and
tensor over S with the coordiante ring Cn,k. This is still a graded complex: the
matrix degree of g ⊗S hA is φ(g)φ̃(hmA).

Definition 1.11. For ξ ∈ Mn,k,d, let Σξ be the simplicial complex with vertices
consisting of elements of Mn,k,d. The m-simplices are m + 1 tuples of vertices
[B0...Bm] such that B1 + · · · + Bm ≤ ξ, where ≤ indicates comparison entry-by-
entry.

(Henceforth we will omit the condition that ξ ∈Mn,k,d: in light of the bijection
in Theorem 1.6, "the degree of ξ" refers to d, the sum of each column of ξ.) We
will use Fξ,m to denote the free C module generated by the set of all m-simplices
in Σξ. These submodules form a chain complex:

Gξ : . . . Gξ,2 → Gξ,1 → Gξ,0 → 0

with differentials given by d([B0 . . . Bm]) =
∑m
i=0(−1)i−1[B0 . . . B̂i . . . Bm], where

B̂i indicates that Bi is omitted.

Theorem 1.12. (Cn,k ⊗S C (∆))ξ is isomorphic to Gξ.

Proof. Let
τ(h⊗S gA) = [φ̃(v)]v∈A

Note h⊗S gA = g · h⊗S A ∈ (Cn,k ⊗S C (∆))ξ implies that

φ(g · h) +
∑
v∈A

φ̃(mv) = ξ

Solving for g ·h, we find φ(g ·h) = ξ−
∑
v∈A φ̃(mv). Thus g ·h is uniquely determined

by ξ and A, so the function is injective. The fact that τ is surjective is immediate.



4 LUKE KIERNAN AND RYAN CAPOUELLEZ ADVISOR: ANDREW SNOWDEN

It is a striaghtforward computation to show that τ commutes with the relevant
differentials: we’re essentially just "forgetting" about the h and the g in g ⊗S hA
and then applying φ̃ to the vertices. �

Theorem 1.13. Fix some d. Then the ith homology of the simplicial complex Σξ
is trivial for all ξ of degree d if and only if the (i+ 1)th syzygy module of Cn,k has
no generators of degree d.

Proof. This follows from Theorem 1.10 and Theorem 1.12. �

The above result will be our chief tool for investigating the syzygies.

Theorem 1.14. In the decomposition of TorSi (Cn,k,C), it suffices to consider
pieces of degree ξ such that the entries of ξ are ones and zeros.

A detailed proof of the above claim is beyond the scope of this paper, but we’ll
give a general outline. Cn,k is naturally a representation of GLn(C)×· · ·×GLn(C),
where there are k copies of GLn(C). Tor is functorial, so TorSi (C, Cn,k) is a rep-
resentation of GLn(C)k. Each (TorSi (Cn,k,C))λ is a subrepresentation. Let Vλ
denote the subrepresentation associated to lambda. From the form of the Koszul
complex, one can show that Vλ is a polynomial representation. Applying Schur-
Weyl duality yields a correspondance between Vλ (as a GLn(C)k module) and the
1q weight space of Vλ (as an Sk module), where q is the degree of Vλ. This implies
that the pieces of degree ξ, where the entries of ξ are ones and zeros, generate
TorSi (Cn,k,C).

2. Second Syzygies

Now, we proceed to characterize the module of second syzygies. These results
are well-known. However, our methods are different: we use explicit geometric
constructions instead of tools from homological algebra.

Theorem 2.1. The first homology of the complex Σξ is nontrivial if and only if
deg ξ = 3: equivalently, the the module of second syzygies is generated by elements
of degree 3.

Much of the argument for the forward direction comes down to the following
lemma:

Lemma 2.2. If deg(ξ) ≥ m, given any m − 1 vertices v1, . . . vm−1 in Σξ, there
exists a vertex w such that for all i wvi is an edge.

Proof. Consider the jth column of ξ and of the vi. deg(ξ) ≥ m implies that the
jth column of the matrix ξ consists of a sum of at least distinct m unit vectors. By
Theorem 1.14, we may assume all entries of ξ are either 1 or 0. The jth column
of each vi consists of exactly one unit vector, for a total of m − 1 or fewer unit
vectors between the m− 1 vertices. By the Pigeonhole Principle, there exists some
unit vector eaj that appears in the jth column of ξ but not among the jth columns
of vertices. Set w =

[
ea1 , . . . ean

]
. Then for each i, vi + w ≤ ξ. �

The strategy is to use Lemma 2.2 to split large 1-cycles, reducing to 1-cycles
of a small size. Then, show that the small 1-cycles are trivial.

Lemma 2.3. If deg(ξ) ≥ 3, any 1-cycle can be expressed as a sum of 1-cycles with
5 edges (i.e. 1-simplices) or fewer.
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Proof. Suppose for sake of contradiction there are some 1-cycles that cannot be
expressed as a sum of 1-cycles with 5 or fewer edges. Let C be a 1-cycle with
the minimal number of vertices that cannot so be expressed. Label the vertices
v1, . . . vn. Of course, we must have n > 5. By Lemma 2.2, deg(ξ) ≥ 3 implies
that there exists some vertex w such that v1w and wv4 are both 1-simplices in the
simplicial complex. Let C ′ = v1v2v3v4w and C ′′ = v1wv4 . . . vn. n > 5 guarantees
that the number of 1-simplices in C ′ and in C ′′ are smaller than the number of
vertices in C. By the minimality of C, it follows that C ′ and C ′′ can be expressed
in terms of 1-cycles with 5 or fewer edges. Thus C = C ′+C ′′ can also be expressed
in such a manner, a contradiction. Hence all 1-cycles that cannot be expressed as
a sum of 1-cycles with 5 or fewer edges.

�

vn

v1

v2 v3

v4

v5
w

Lemma 2.4. If deg(ξ) ≥ 4, all 1-cycles in Σξ can be expressed as a sum of 1-cycles
with 4 edges or fewer.

Proof. By Lemma 2.3, it suffices to consider 1-cycles with 5 edges. Let C be a
1-cycle with vertices v1, . . . v5. Apply Lemma 2.2 with the three vertices v1, v2,
and v4. deg(ξ) ≥ 4 implies that there exists some vertex w such that wv1, wv2,
and wv4 are edges. Let C ′ = v2v3v4w, C ′′ = v4v5v1w, and T = [v1v2w]. Then
C = C ′ + C ′′ + ∂T , so C ≡ C ′ + C ′′. C ′ and C ′′ each have 4 edges. �

With these lemmas, now we will show that for deg(ξ) 6= 3, the module of second
syzygies is trivial. For deg(ξ) ≤ 2, the simplicial complex is just too small: it has
no 1-cycles. For deg(ξ) ≥ 4, by Lemma 2.3 and Lemma 2.4, it suffices to show
that 1-cycles with 4 edges are trivial. This requires considering specific vertices and
specific cycles; for notational convenience, we will denote the vertex

[
ea1 , . . . eak

]
by (a1, . . . ak) or simply a1 . . . ak.

Let C be some 1-cycle with vertices v1, . . . v4. If deg(ξ) ≥ 5, then apply Lemma
2.2 to the four vertices of C: there exists some vertex w such that v1w, . . . v4w
are edges. For 1 ≤ i ≤ 4, let Ti = [vivi+1w], where the indices are mod 4. Then
C =

∑4
i=1 ∂Ti.

If deg(ξ) = 4, then we narrow down the possibilities. Apply Theorem 1.14
and reorder each column of ξ so that the ones are at the top: then the rows of
zeros may be ignored. Hence we may assume n = 4 and ξ consists of all 1’s. Using
the relevant group actions, turn v1 into 1 . . . 1. (For example, if v1 = 314, apply
(13)× id× (14) ∈ S4 × S4 × S4 to all vertices.) Note that because v1v2 is an edge,
v2 cannot possibly involve 1. By a similar argument, we can use permutations to
turn v2 into (2, . . . 2), without affecting v1 = (1, . . . 1).

Now, we turn to v3. v3v2 is an edge, so v3 does not involve 2. That leaves only
1, 3, and 4. Neither v1 nor v2 involve a 3 or 4, so we may apply the permutation
(34) to the coordinate that are 4. Reordering the coordinates does not change v1
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and v2, so without loss of generality the coordinates occur in non-decreasing order.

Thus v3 =

a︷ ︸︸ ︷
1 . . . 1

b︷ ︸︸ ︷
3 . . . 3

Finally, we determine v4. Considering the edges v4v1 and v4v3, the first a co-
ordinates of v4 may use 2, 3, and 4. Note that between the first a coordinates
of the other 3 vertices, we have only used 1 and 2. Thus, using the permutation
(34), we may turn any 4’s in this block into 3’s. The edges v4v1 and v4v3 imply
that the last b coordinates are among {2, 4}. Reordering within the block of the
first a coordinates or within the block of the last b coordinates does not affect the
other vertices, so without loss of generality each block is non-decreasing. Hence

v4 =

r︷ ︸︸ ︷
2 . . . 2

s︷ ︸︸ ︷
3 . . . 3

p︷ ︸︸ ︷
2 . . . 2

q︷ ︸︸ ︷
4 . . . 4, where r + s = a and p+ q = b.

v1 : 1 . . . 1 v2 : 2 . . . 2

v3 :

r+s︷ ︸︸ ︷
1 . . . 1

p+q︷ ︸︸ ︷
3 . . . 3v4 :

r︷ ︸︸ ︷
2 . . . 2

s︷ ︸︸ ︷
3 . . . 3

p︷ ︸︸ ︷
2 . . . 2

q︷ ︸︸ ︷
4 . . . 4

It turns out we can do a bit better than this: note that none of v1, v4, v3 use 4

in the first r + s+ p coordinates. Let w =

r+s︷ ︸︸ ︷
4 . . . 4

p︷ ︸︸ ︷
4 . . . 4

q︷ ︸︸ ︷
2 . . . 2. Then v1w, v2w, and

v3w are all edges. The above cycle differs from v1v2v3w by the boundaries of the
two triangles v3v4w and v4v1w. Thus, we may replace v4 by w.

It suffices to show the 1-cycle below is trivial.

111 222

133442

It can be expressed in terms of triangles as depicted below.
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111 222

133442

221

334

443

314

We have shown that if deg(ξ) 6= 3, all 1-cycles are trivial. To finish the proof of
Theorem 2.1, we now need to show that if deg(ξ) = 3 then there exists a nontrival
1-cycle. The following result will also be useful for dealing with third syzygies, so
we state it as a lemma.

Lemma 2.5. Let ∆l denote the free Z-module on set of l-simplices in Σξ, and let
ddeg(ξ)−1 denote the boundary map from ∆deg(ξ)−1 to ∆deg(ξ)−2. If deg(ξ) > 1, then
im(ddeg(ξ)−1) is the free module generated by {ddeg(ξ)−1(σ)|σ ∈ ∆deg(ξ)−1}.

Proof. Clearly, im(ddeg(ξ)−1) is generated by {ddeg(ξ)−1(σ)|σ ∈ ∆deg(ξ)−1}. It re-
mains to be shown that there are no relations among these generators, i.e. that the
kernel of ddeg(ξ)−1 : ∆deg(ξ)−1 → ∆deg(ξ)−2 is trivial.

Take the dual. Let Φ : ∆→ ∆∗ be the dual isomorphorism. The boundary map
as in homology ddeg(ξ)−1 : ∆deg(ξ)−1 → ∆deg(ξ)−2 becomes the boundary map as in
cohomology d∗deg(ξ)−1 : ∆∗deg(ξ)−2 → ∆∗deg(ξ)−1. Consider some deg(ξ) − 2 simplex

[v0 . . . vdeg(ξ)−2]. Then
∑deg(ξ)−2
i=0 vi ≤ ξ. Note that the sum of each column in ξ

is deg(ξ). The sum of each column in
∑deg(ξ)−2
i=0 is deg(ξ) − 1. Therefore there

exists a unique w ∈ Σξ such that w +
∑deg(ξ)−2
i=0 = ξ. Geometrically, there is a

unique deg(ξ)− 1 simplex σ = [v0 . . . vdeg(ξ)−2w] such that the deg(ξ)− 2 simplex
[v0 . . . vdeg(ξ)−2] is a face of σ. Therefore

d∗deg(ξ)−1

(
Φ([v0 . . . vdeg(ξ)−2])

)
= ±Φ([v0 . . . vdeg(ξ)−2w])

This implies that d∗deg(ξ)−1 is surjective.
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∆∗deg(ξ)−1 ∆∗deg(ξ)−2

∆deg(ξ)−1 ∆deg(ξ)−2

Φ−1

d∗deg(ξ)−1

Φ−1

ddeg(ξ)−1

Suppose that a ∈ ker(ddeg(ξ)−1). Trace a back to an element of ∆∗deg(ξ)−2: Φ−1

is an isomorphism and d∗deg(ξ)−1 is surjective. There exists b ∈ ∆∗deg(ξ)−2 such that
a = Φ−1(d∗deg(ξ)−1(b)). By the commutativity of the above diagram,

Φ−1(b) = ddeg(ξ)−1(Φ−1(d∗deg(ξ)−1(b))) = ddeg(ξ)−1(a) = 0

However, Φ is an isomorphism: we must have b = 0 and thus a = 0.
�

This lemma immediately yields a useful criteria for identifying nontrivial cycles:
if C is a deg(ξ)−2 cycle in Σξ, then we only need to check if C is in the free module
generated by {ddeg(ξ)−1(σ)|σ ∈ ∆deg(ξ)−1}.

Theorem 2.6. If deg(ξ) = 3, then Σξ contains a nontrival 1-cycle.

Proof. First, we addresss k = 2. Without loss of generality, n = 3 and all entries
of ξ are ones. Let v1 = 11, v2 = 22, v2 = 13, and v4 = 32. Let C =

∑4
i=1[vivi+1],

where the indices are mod 4). Apply the above lemma: deg(ξ) = 3, and C is a
3 − 2 = 1 cycle. No three vertices in C form a triangle: neither v1v3 nor v2v4 are
edges. Therefore, C is not in the free module generated by the boundaries of all
triangles in Σξ. By Corollary 2.6.1, C is a nontrivial 1-cycle.

If k > 2, then simply repeat the last digit k−1 times: v1 = 11 . . . 1, v2 = 22 . . . 2,
v3 = 13 . . . 3, and v4 = 32 . . . 2. No three vertices in this cycle form a triangle, so
for the same reasons, this cycle is nontrivial. �

That finishes the proof of Theorem 2.1. It turns out that when deg(ξ) = 3, all
nontrivial 1-cycles in Σξ are expressible in terms of those with 4 edges.

Theorem 2.7. When deg(ξ) = 3, all nontrivial 1-cycles in Σξ are expressible in
terms of those with 4 edges.

Proof. By Lemma 2.3, deg(ξ) ≥ 3 implies that all 1-cycle are expressible in terms
of those with 5 or fewer edges. All 1-cycles with 3 or fewer edges are trivial, so it
remains to be shown that all 1-cycles with 5 edges are expressible in terms of those
with 4 edges. Using the group actions, we restrict the possibilities to one 1-cycle of
length 5. Then, we express that 1-cycle in terms of 1-cycles of length 4.

Without loss of generality, n = 3 and

ξ =

1 . . . 1
1 . . . 1
1 . . . 1


for a total of k columns. Let C be a 1-cycle with 5 edges. Label the vertices
v1, . . . v5. It suffices to consider cases where v1 = 1 . . . 1 and v2 = 2 . . . 2. v2v3 is an

edge, so v3 must have only 1 and 3 as coordinates. Reordering, v3 =

a︷ ︸︸ ︷
1 . . . 1

b︷ ︸︸ ︷
3 . . . 3.

Now consider v5. v5v1 is an edge, so v5 must only have 2 and 3 as coordinates.
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Reordering within the first a coordinates, and within the last b coordinates, v5 =
r︷ ︸︸ ︷

2 . . . 2

s︷ ︸︸ ︷
3 . . . 3

p︷ ︸︸ ︷
2 . . . 2

q︷ ︸︸ ︷
3 . . . 3, where r + s = a and p+ q = b.

v2 : 2 . . . 2

v3 :

r+s︷ ︸︸ ︷
1 . . . 1

p+q︷ ︸︸ ︷
3 . . . 3

v4

v5 :

r︷ ︸︸ ︷
2 . . . 2

s︷ ︸︸ ︷
3 . . . 3

p︷ ︸︸ ︷
2 . . . 2

q︷ ︸︸ ︷
3 . . . 3

v1 : 1 . . . 1

That leaves v4. With the exception of the last p coordinates, each coordinate
of v3 is distinct from the corresponding coordinate of v5. There are only 3 pos-
sibilities, so from the edges v3v4 and v4v5, all but the last p coordinates of v4

are determined. And each of the last p coordinates must be 1 or 2. Hence, we

find v4 =

r︷ ︸︸ ︷
2 . . . 2

s︷ ︸︸ ︷
3 . . . 3

p︷ ︸︸ ︷
2 . . . 2

l︷ ︸︸ ︷
1 . . . 1

m︷ ︸︸ ︷
2 . . . 2, where l + m = p. That is 5 blocks of

coordinates, so all 1-cycles of length 5 are produced from the one below, through
duplication and/or deletion. (If we were to have l = 0 we would just delete the 4th
coordinate from every vertex.)

22222

11333

32112

23233

11111

Below is a depiction of how to break this up into squares and triangles. We are
interested in the equivalence class of this 5-cycle in homology, so triangles don’t
matter. The basic approach is to use squares and triangles to get a pair of vertices
that match in most coordinates (e.g. 32133 and 3223), so that there is greater
freedom in choosing things adjacent to both of them.
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22222

11333

32112

23233

11111

2322111321

32133

32233

11311

�

3. Third Syzygies

[3] proves that the module of third syzygies is nontrivial if and only if deg ξ = 4.
We proved a partial result in this direction. The idea is to create a process akin
to separating off a pentagon in the treatment of 1-cycles. First, show that one can
"split off" some small piece from an arbitrary 2-cycle, in such a way that the 2-cycle
becomes "simpler." Second, show that each small piece is homologically trivial. We
have shown that all "small pieces" of a certain type are homologically trivial.

This definition is a more restrictive version of the one found in [3].

Definition 3.1. A 2-cycle C (in Σξ) is a UFO if and only if there exists vertices
{vi}1≤i≤q, u1, u2 such that C =

∑q
i=1 ([vivi+1u1] + [vivi+1u2]), where the indices

are mod q.

A UFO is the simplest type of 2-cycle: it is a 1-cycle, with two extra vertices
attached to the top and the bottom. See Figure 1 for an example: the triangular
faces make up the 2-cycle, but they’re not filled in so that one can see the full
structure. Given a UFO η, we refer to

∑q
i=1[vivi+1] as "the 1-cycle of η." u1 and

u2 will be referred to as the "top and bottom" vertices of the UFO. (If there are
multiple valid ways to assign vi and u1, u2 to the vertices, then just choose one
such labeling.)

Lemma 3.2. When deg(ξ) ≥ 5, all UFOs in Σξ can be expressed in terms of those
with a 1-cycle of length at most 5.

Proof. Let w1 and w2 be the top and bottom vertices of the UFO. Let v1, . . . vn the
the vertices around the 1-cycle (in clockwise order, say), where n > 5.

Without loss of generality the entries of ξ are ones and zeros. Thus, there are
no "empty faces" in Σξ; if AB, BC, and AC are all edges (and deg(ξ) ≥ 3), then
ABC is a triangle in Σξ. We follow the procedure of Lemma 2.3, except that for
each additional vertex we insert, we also require each new vertex to have an edge to
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Figure 1. A UFO with 1-cycle of length 7

w1 and to w2. We then split the original UFO in to 2 smaller UFOs, corresponding
to the 2 smaller 1-cycles produced in the proof of Lemma 2.3.

By Lemma 2.2, deg(ξ) ≥ 5 implies that there exists some vertex u such that
v1u, v4u, w1u, and w2u are all edges in Σξ. This implies that v1uw1, w1uv4, v4uw2,
and w2uv1 are all triangles in Σξ. Hence, we may split up the original UFO into 2
UFOs: one with 1-cycle v1, v2, v3, v4, u and another with 1-cycle v4, v5, . . . vn, v1, u.
When n = 7, these pieces are depicted in Figure 2a and Figure 2b, respectively.

�

(a) The first "piece" of the UFO (b) The second "piece" of the UFO

Figure 2. The decomposition of the UFO in Figure 1 into two
smaller pieces

Recall that Lemma 2.3 required deg(ξ) ≥ 3 for all 1-cycles to be expressible in
terms of those of length at most 5. Lemma 2.4 requires deg(ξ) ≥ 5 in order for



12 LUKE KIERNAN AND RYAN CAPOUELLEZ ADVISOR: ANDREW SNOWDEN

Figure 3. Decomposition of a UFO with a 1-cycle of length 3

all UFOs to be expressible in terms of those with 1-cycle of length at most 5. Note
that 5 = 3 + 2. In order to apply Lemma 2.2 we must increase the degree by 2,
so we get edges to the two vertices w1 and w2 that aren’t in the 1-cycle.

Lemma 2.4 required deg(ξ) ≥ 4. If we increase deg(ξ) by 2, then we get a
corresponding result for UFOs.

Lemma 3.3. If deg(ξ) ≥ 6, all UFOs in Σξ can be expressed in terms of those with
a 1-cycle of length at most 4.

Theorem 3.4. If deg(ξ) ≥ 7, then all UFOs are homologically trivial.

Proof. By Lemma 3.3, all UFOs in Σξ can be expressed in terms of those with a
1-cycle of length at most 4.

If n = 3, the UFO is the boundary of [v1v2v3w1] + [v1v2v3w2], as depicted in
Figure 3.

If n = 4, note that the UFO has 6 vertices and deg(ξ) ≥ 7. Applying Lemma
2.2, there exists some vertex u ∈ Σξ such that uv1, . . .uv4, uw1, uw4 are all edges in
Σξ. Then the UFO is the boundary of

∑4
i=1[vivi+1w1u] +

∑4
i=1[vivi+1w2u], where

the indices of the vi are mod 4, as depicted in Figure 4.
�

However, decomposing an arbitrary 2-cycle into these small pieces has resisted
our efforts. How does one "split off" a UFO from an arbitrary 2-cycle in such a
way that the remaining structure is "simpler" or "smaller?" A 1-cycle is a sum of
polygons, each of which is described by the number of sides. 2-cycles resist such
an easy description. "Spheres" (trivial fundamental group) are the equivalent of
polygons, but "spheres" exhibit much more variety than polygons.

We also found an example of a nontrivial 2-cycle in Σξ, when n = 4, k = 2,
and ξ is all 1’s. This is depicted in Figure 5. All the shaded triangles are oriented
the same direction. The arrows serve to indicate that edges along the top and are
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Figure 4. Decomposition of a UFO with a 1-cycle of length 4

Figure 5. A nontrivial 2-cycle

the same as those along the bottom: the 2-cycle in Figure 5 is homeomorphic to a
torus. Once again, 11 stands for the vertex (e1, e1) ∈ Σξ.
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Theorem 3.5. The 2-cycle (in Σξ) depicted in Figure 5 is nontrivial in homology.

Proof. Clearly the sum of triangles in Figure 5 has no boundary, so it is a 2-cycle.
Apply Corollary 2.6.1. The 2-cycle contains the face 11, 22, 33. That face is in
one and only one tetrahedron: 11, 22, 33, 44. However, taking the boundary of
that tetrahedron yields the face 11, 22, 44 (and 3 other triangle faces), which is not
in the 2-cycle depicted in Figure 5. �

In finding this 2-cycle, the critical insight is that for each edge v1v2, there are
exactly 2 other edges w1w2 such that v1v2w1w2 is a tetrahedron. The edge 11,
22 forms a tetrahedron with 33, 44, which also forms a tetrahedron with 12, 21.
Repeating in this fashion, we get back after 4 pairs of edges, after 4 different
tetrahedra. Make note of the vertices 11, 22, 33, 44 in the bottom-left corner of
Figure 5, followed by 44, 33, 12, 12 above it, and so on, continuing upward. Do
the same thing with the two edges 11, 44 and 22, 33 to get the tetrahedra along
the bottom, toward the right. We found a way to choose two faces from each
tetrahedron in such a way that the boundaries cancel.

While one could replace the segment from 11 to 33 by one from 22 to 44, doing
so amounts to swapping the pair of faces in the tetrahedron with vertices 11, 22,
33, 44 for the opposite faces. Thus, they’re equivalent in homology. Some arbitrary
choices are involved in the process of constructing this 2-cycle: there are multiple
2-cycles of this type. However, one can show that they’re all the same as the 2-cycle
depicted, up to relabeling in the usual fashion.
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