Minimal Triangulations of Sphere Products

Jonathon Jacobs

Advisor: Hailun Zheng jjonatho@umich.edu

August 28, 2018

Abstract

We provide an alternative construction of a (2d+2)-vertex triangulation of $\mathbb{S}^2 \times \mathbb{S}^{d-3}$. We generalize this construction to give a triangulation of $\mathbb{S}^i \times \mathbb{S}^{d-i-1}$.

1 Introduction

A basic question in the field of combinatorial geometry is asking for the existence of a vertexminimal triangulation of a combinatorial manifold. There are few manifolds for which this is known, much less how to construct such a triangulation. For sphere products, Brehm and Kuhnel [1] prove that, for $i \leq j$, the vertex-minimal triangulation of $\mathbb{S}^i \times \mathbb{S}^j$ requires at least i + 2j + 4 vertices. Such triangulations are constructed by Lutz [5] in low-dimensional cases with the aid of computer programs. However, such constructions are not known to exist in general. More recently, Klee and Novik [3] found a centrally symmetric 2d-vertex triangulation of $\mathbb{S}^i \times \mathbb{S}^{d-i-2}$ for all pairs of integers (i, d) with $0 \leq i \leq d-2$. Their construction can be realized as certain subcomplexes of the (d-1)-dimensional octahedral sphere.

In the interest of gathering information about the kinds of constructions that triangulate sphere products, in Section 3, we give an alternative construction of $\mathbb{S}^2 \times \mathbb{S}^{d-3}$, and list some properties of this triangulation. The construction relies on the use of Klee and Novik's subcomplexes, outlined in Section 2 along with other basic information concerning simplicial complexes and combinatorial manifolds. In Section 4, we generalize this result to create triangulations of $\mathbb{S}^i \times \mathbb{S}^{d-3}$ for all pairs of integers (i, d) such that $2 \leq i \leq d-3$.

2 Preliminaries

In this section, we review concepts and results concerning simplicial complexes and combinatorial manifolds, and state other necessary information. A simplicial complex Δ on a vertex set V is a collection of subsets $\sigma \subseteq V$, called faces, which is closed under inclusion and contains $\{v\}$ for all $v \in V$. For $\sigma \in \Delta$, define dim $(\sigma) := |\sigma| - 1$, and define the dimension of Δ to be the maximal dimension of the faces of Δ . The facets of Δ are precisely the maximal faces of Δ with respect to inclusion. we say that Δ is pure if all facets of Δ have the same dimension.

Let σ be a face of a simplicial complex Δ . The *link* of σ in Δ , $lk_{\Delta}(\sigma)$, and *star* of σ in Δ , $st_{\Delta}(\sigma)$ are defined by

$$lk_{\Delta}(\sigma) := \{\tau - \sigma \in \Delta : \sigma \subseteq \tau \in \Delta\} \text{ and } st_{\Delta}(\sigma) := \{\tau \in \Delta : \tau \cup \sigma \in \Delta\}.$$

When it is clear which complex σ is in, we denote the link and star of σ simply as $lk(\sigma)$ and $st(\sigma)$, respectively.

Let Δ be a pure *d*-dimensional simplicial complex. For facets $\tau_1, \ldots, \tau_k \in \Delta$, we say that the ordering (τ_1, \ldots, τ_k) is a *shelling* of Δ if for every $1 < i \leq k$, the set of faces $\tau_i - (\bigcup_{j < i} \tau_j)$ has a unique minimal element with respect to inclusion. We say that this minimal face is the *restriction* of τ_i , denoted $r(\tau_i)$. Equivalently, (τ_1, \ldots, τ_k) is a shelling if for every $1 < i \leq k$, the complex $\Delta \cap (\bigcup_{j < i} \tau_j)$ is pure and has dimension d - 2.

A d-dimensional simplicial complex Δ is said to be a *combinatorial manifold* if the link of every non-empty face of Δ is a triangulated $(d - |\sigma|)$ -dimensional ball or sphere. A combinatorial ball is a combinatorial manifold that triangulates a ball, and likewise, a combinatorial sphere is a combinatorial manifold that triangulates a sphere. The boundary complex of a simplicial d-ball is a simplicial (d - 1)-sphere.

Throughout, we denote by ∂C_d^* the boundary complex of the *d*-dimensional cross-polytope on 2*d* vertices. let $\{x_1, x_2, \ldots, x_d, y_1, \ldots, y_d\}$ be the vertex set of ∂C_d^* , where x_i and y_i are antipodal vertices for all *i*. The facets of ∂C_d^* are precisely the faces of ∂C_d^* with exactly one element taken from each antipodal pair of vertices. Thus each facet of ∂C_d^* may be uniquely identified with an *xy*-word of length *d*, and ∂C_d^* is a subcomplex of ∂C_{d+1}^* by adding $\{x_{d+1}, y_{d+1}\}$ to the vertex set of ∂C_d^* .

For a facet $\tau = \{v_1, ..., v_d\}$ of ∂C_d^* , we say that τ has a *switch* at index *i* if v_i and v_{i+1} have differing labels. Define $\mathcal{B}(i, d)$ by the set of facets of ∂C_d^* with at most *i* switches. By definition, $\mathcal{B}(i, d)$ is a subcomplex of ∂C_d^* . Finally, the following lemma is taken directly from [3]. Here \mathcal{D}_i denotes the dihedral group of order 2i:

Lemma 2.1. For $0 \le i < d-1$, the complex $\mathcal{B}(i, d)$ satisfies the following:

- a) $\mathcal{B}(i,d)$ contains the entire i-skeleton of the d-dimensional cross polytope as a subcomplex.
- b) $\mathcal{B}(i,d)$ is centrally symmetric. Moreover, it admits a vertex-transitive action of $\mathbb{Z}_2 \times \mathcal{D}_d$ if *i* is even and of \mathcal{D}_{2d} if *i* is odd.
- c) The complex of $\mathcal{B}(i,d)$ in the boundary complex of the d-dimensional cross polytope is simplicially isomorphic to $\mathcal{B}(d-i-2,d)$.
- d) $\mathcal{B}(i,d)$ is a combinatorial manifold (with boundary) whose integral (co)homology groups coincide with those of \mathbb{S}^i .

e) The boundary of $\mathcal{B}(i,d)$ is homeomorphic to $\mathbb{S}^i \times \mathbb{S}^{d-i-2}$.

3 Triangulations of $\mathbb{S}^2 \times \mathbb{S}^{d-3}$

In this section, we construct an alternative triangulation of $\mathbb{S}^2 \times \mathbb{S}^{d-3}$ for $d \geq 5$. To do this, we will make use of the following theorem in [4].

Theorem 3.1. Let M be a simply connected codimension-1 submanifold of \mathbb{S}^d , where $d \geq 5$. If M has the homology of $\mathbb{S}^i \times \mathbb{S}^{d-i-1}$ and $1 < i \leq \frac{d-1}{2}$, then M is homeomorphic to $\mathbb{S}^i \times \mathbb{S}^{d-i-1}$.

Proposition 3.2. Let D_1 and D_2 be two combinatorial d-balls such that $\partial(D_1 \cup D_2)$ is a (d-1)-dimensional submanifold of a combinatorial d-sphere and $D_1 \cap D_2 \subseteq \partial D_1 \cap \partial D_2$ is a path-connected combinatorial (d-1)-manifold that has the same homology as S^{i-1} . Then $\partial(D_1 \cup D_2)$ triangulates $\mathbb{S}^i \times \mathbb{S}^{d-i-1}$ for $d \geq 5$ and $1 < i \leq \frac{d-1}{2}$.

Proof: First note that $D_1 \cup D_2$ is the union of two combinatorial *d*-balls that intersect along the combinatorial (d-1)-manifold $D_1 \cap D_2$. Hence $D_1 \cup D_2$ is a combinatorial *d*-manifold with boundary, and $\partial(D_1 \cup D_2)$ is a combinatorial (d-1)-manifold.

By applying the Mayer-Vietoris sequence on $(\partial D_1 \setminus \partial D_2, D_1 \cap D_2, \partial D_1)$, we see that the complex $\partial D_1 \setminus \partial D_2$ has the same homology as \mathbb{S}^{d-i-1} . Applying the Mayer-Vietoris sequence on the triple $(\partial D_1 \setminus \partial D_2, \partial D_2 \setminus \partial D_1, \partial (D_1 \cup D_2))$, we obtain that $\partial (D_1 \cup D_2)$ has the same homology as $\mathbb{S}^i \times \mathbb{S}^{d-i-1}$. On the other hand, the complex $D_1 \cup D_2$ is simply connected, since the union of two simply connected open subsets $\operatorname{int}(D_1), \operatorname{int}(D_2)$ with path-connected intersection $D_1 \cap D_2$ is simply connected. We conclude from Theorem 3.1 that $\partial (D_1 \cup D_2)$ triangulates $\mathbb{S}^i \times \mathbb{S}^{d-i-1}$.

The above proposition provides us with a method of constructing a triangulation of $\mathbb{S}^2 \times \mathbb{S}^{d-3}$.

3.1 Preparations

Notation 3.3. In the following we use the convention that in ∂C_d^* , $x_{d+k} := x_k$ and $y_{d+k} := y_k$. In addition, fix $j = \lfloor \frac{d+1}{2} \rfloor$.

Definition 3.4. Let τ be a face of ∂C_d^* and let $\kappa(\tau)$ count the number of y labels in τ . Define Γ_k to be the union of facets τ in ∂C_d^* that have at most 2 switches and with $\kappa(\tau) = k$.

It is easy to see that for $1 \leq k \leq d-1$, the complex Γ_k consists of d facets

$$\tau_k^l = (\{x_1, \dots, x_d\} \setminus \{x_l, \dots, x_{l+k-1}\}) \cup \{y_l, \dots, y_{l+k-1}\}, \text{ where } 1 \le l \le d$$

We will now prove some properties of Γ_k .

Proposition 3.5. The complex $\bigcup_{k=0}^{n} \Gamma_k$ is a shellable (d-1)-ball for all $0 \le n \le j$.

Proof: We prove by induction on n. For n = 0, it is easy to see that the complex Γ_0 is a shellable (d-1)-ball. Now assume that $\Delta := \bigcup_{k=0}^{n-1} \Gamma_k$ is a shellable (d-1)-ball. Note that for any $1 \leq k \leq d$, the restriction face of τ_n^k is $r(\tau_n^k) = \{y_k, y_{k+n-1}\}$, and $\tau_n^k \cap (\Delta \cup \bigcup_{m < k} \tau_n^m) = [r(\tau_n^k), \tau_n^k]$, which is a shellable (d-2)-ball. Hence by the inductive hypothesis and induction on n, $\bigcup_{k=0}^n \Gamma_k$ is a simplicial (d-1)-ball that has a shelling order $(\tau_0^1, \tau_1^1, \ldots, \tau_1^d, \ldots, \tau_n^d)$. \Box

Proposition 3.6. The complex $\Gamma_{j-1} \cup \Gamma_j$ has the same homology as \mathbb{S}^1 .

Proof: The complex $\Gamma_{j-1} \cup \Gamma_j$ consists of 2d facets $\tau_{j-1}^1, \ldots, \tau_{j-1}^d, \tau_j^1, \ldots, \tau_j^d$. Each facet τ_{j-1}^k has exactly two adjacent facets τ_j^k and τ_j^{k-1} in $\Gamma_{j-1} \cup \Gamma_j$. Similarly, each facet τ_j^k has exactly two adjacent facets τ_{j-1}^k and $\tau_{j-1}^{k+1} \cup \Gamma_j$. Hence the facet ridge graph of $\Gamma_{j-1} \cup \Gamma_j$ is a 2d-cycle. Thus $\Gamma_{j-1} \cup \Gamma_j$ has the same homology as S^1 .

Definition 3.7. For $1 \le k \le d-1$, define γ_k to be the set of facets in $\Gamma_{k-1} \cup \Gamma_{k+1}$ such that v_1 has the same label as v_d . For example, when d = 6, the following facets are in γ_i :

$$\{x_1, x_2, x_3, y_4, y_5, x_6\}, \{x_1, x_2, y_3, y_4, x_5, x_6\}, \{x_1, y_2, y_3, x_4, x_5, x_6\}, \{y_1, y_2, y_3, x_4, x_5, y_6\}, \{y_1, y_2, x_3, x_4, y_5, y_6\}, \{y_1, x_2, x_3, y_4, y_5, y_6\}.$$

Notice that γ_i contains d facets. To prove the next proposition, we recall a theorem from Danaraj and Klee [2]:

Theorem 3.8. If a (d-1)-dimensional simplicial complex Δ is shellable and each (d-2)dimensional face of Δ is contained in at most two facets, then Δ is either a combinatorial ball or a combinatorial sphere.

Proposition 3.9. The complex $\cup_{k=0}^{j} \Gamma_k \cup \gamma_j$ is a shellable (d-1)-ball.

Proof: The shelling order for $\bigcup_{k=0}^{j} \Gamma_k \cup \gamma_j$ is as follows:

$$\tau_0^1, \tau_1^1, \tau_1^2, \dots, \tau_1^d, \tau_2^1, \dots, \tau_j^{j+1}, \tau_{j+1}^{j+1}, \tau_j^{j+2}, \tau_{j+1}^{j+2}, \dots, \tau_j^d, \tau_{j+1}^d$$

Note that this is similar to the shelling order of $\bigcup_{k=0}^{i} \Gamma_k$. Thus we only need to show that the terms after τ_j^{j+1} comply with the rest of the shelling. For $j+1 \leq k \leq d$, we see that the restriction face of τ_{j+1}^k is $r(\tau_{j+1}^k) = \{y_{j+1}, y_{j+k}\}$, and $r(\tau_j^k) = \{y_j, y_{j+k-1}\}$. Because j is defined by the value of d, and because the starting index is determined by the value of k, we see that the restriction face of a facet is completely determined by the facet, and is thus unique. Therefore, the above ordering of facets is indeed a shelling order.

Now consider any (d-2)-dimensional face ρ of $\bigcup_{k=0}^{j} \Gamma_k \cup \gamma_j$. Necessarily, ρ contains (d-1)-vertices. the final vertex is from the pair of vertices corresponding to the index number that does not appear in ρ . Thus there can be at most two facets of $\bigcup_{k=0}^{j} \Gamma_k \cup \gamma_j$ which contain ρ . Therefore, by 3.8, we see that either $\bigcup_{k=0}^{j} \Gamma_k \cup \gamma_j$ is a combinatorial ball or a combinatorial sphere. Because $\bigcup_{k=0}^{j} \Gamma_k \cup \gamma_j$ is a pure, full-dimensional subcomplex of the boundary complex of a simplicial *d*-dimensional polytope, we conclude that $\bigcup_{k=0}^{j} \Gamma_k \cup \gamma_j$ must indeed be a combinatorial (d-1)-ball.

Proposition 3.10. The complex $\Gamma_j \cup \gamma_j$ has the same homology as \mathbb{S}^1 .

 $\begin{array}{ll} Proof: \quad \text{The complex } \Gamma_j \cup \gamma_j \text{ consists of } 2d \text{ facets, } \tau_j^1, \tau_j^2, \ldots, \tau_j^d, \tau_{j-1}^2, \tau_{j-1}^3, \ldots, \tau_{j-1}^{j+1}, \\ \tau_{j+1}^{j+1}, \ldots, \tau_{j+1}^d. \text{ Each facet } \tau_{j-1}^k \text{ has exactly two adjacent facets, } \tau_j^{k-1} \text{ and } \tau_j^{k+1}. \text{ Similarly, the facets } \tau_{j+1}^k \text{ have exactly two adjacent facets, } \tau_j^{k-1} \text{ and } \tau_j^{k+1}. \text{ For } 1 < k < j+1, \text{ the facets } \tau_j^k \text{ have two adjacent facets, } \tau_{j-1}^k \text{ and } \tau_{j-1}^{k+1}. \text{ For } j+1 < k \leq d, \text{ the facets } \tau_j^k \text{ also have two adjacent facets, } \tau_{j+1}^k \text{ and } \tau_{j+1}^k. \text{ Finally, the facet } \tau_j^1 \text{ has } \tau_{j+1}^d \text{ and } \tau_{j-1}^k \text{ as adjacent facets, and } the facet \\ \tau_j^{j+1} \text{ has } \tau_{j-1}^{j+1} \text{ and } \tau_{j+1}^k \text{ as adjacent facets. Thus the facet ridge graph of } \Gamma_j \cup \gamma_j \text{ is a } 2d\text{-cycle. Therefore } \Gamma_j \cup \gamma_j \text{ has the same homology as } \mathbb{S}^1. \end{array}$

The next two lemmas demonstrate that $\Gamma_{j-1} \cup \Gamma_j$ and $\Gamma_j \cup \gamma_j$ are both combinatorial manifolds.

Notation 3.11. For a facet $\tau = \{v_1, ..., v_d\}$ of ∂C_d^* , we may encode the vertices as a vector. define v_j to be 1 if v_j has label x, and -1 otherwise. thus the facet $\{x_1, x_2, y_3, x_4, y_5\}$ of ∂C_5^* may be interpreted as

From now on, we identify a facet τ of ∂C_d^* by its corresponding vector.

Lemma 3.12. For odd d, there exists a bijection $f : \mathcal{B}(1, d) \to \Gamma_{j-1} \cup \Gamma_j$.

Proof: For odd d, define the matrix M_d to have entries $m_{k,2k-1} = -1$ for $1 \le k \le j$, $m_{k,2k-d-1} = 1$ for $j+1 \le k \le d$, and otherwise $m_{a,b} = 0$. For example, when d = 5, we see that

$$M_5 = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

. For a facet τ of $\mathcal{B}(1,d)$, define the map $f: \mathcal{B}(1,d) \to \Gamma_{j-1} \cup \Gamma_j$ by $f: \tau \mapsto M_d \tau$, where the operation is matrix multiplication on the facets identified as above.

First, we show that M_d maps identified facets of $\mathcal{B}(1,d)$ to identified facets of $\Gamma_{j-1} \cup \Gamma_j$. Facets of $\mathcal{B}(1,d)$ have at most 1 switch, and because $\mathcal{B}(1,d)$ is centrally symmetric, we only need to look at half of the facets. Thus we may assume that $\tau \in \mathcal{B}(1,d)$ has $v_1 = x_1$. If τ has no switches, then it is clear that $f(\tau) = \{y_1, y_2, y_3, \dots, y_j, x_{j+1}, x_{j+2}, \dots, x_d\}$, which is in Γ_j . On the other hand, if τ has a switch, let $k \geq 1$ be the index of said switch. Then it is easy to see that for odd k, $\kappa(f(\tau)) = j$, and for even k, $\kappa(f(\tau)) = j - 1$. Also, if $k \neq d - 1$, then $f(\tau)$ has exactly two switches, and when k = d - 1, $f(\tau)$ has exactly one switch, at index j - 1. Thus $f(\tau)$ has at most two switches, and has $\kappa(f(\tau)) = j - 1$ or j. Therefore f maps $\mathcal{B}(1,d) \to \Gamma_{j-1} \cup \Gamma_j$. Next, we show that M_d has nonzero determinant. because M_d has a gentle slope of -1 entries on top, we can expand by minors to see that

$$\det(M_d) = (-1)^j \det\left(\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \right) = (-1)^j \det(I) = (-1)^j \neq 0.$$

Since $|\mathcal{B}(1,d)| = |\Gamma_{j-1} \cup \Gamma_j| = 2d, f : \mathcal{B}(1,d) \to \Gamma_{j-1} \cup \Gamma_j$ must be a bijection.

Lemma 3.13. For even d, there exists a bijection $f : B(1, d) \to \Gamma_i \cup \gamma_i$.

Proof: Define M_d to be a matrix with entries given by the following: $m_{k,2k-1} = -1$ for $1 \le k \le j$, $m_{k,2k-d} = 1$ for $j+1 \le k \le d$, and otherwise $m_{a,b} = 0$. For example, when d = 6,

	$\left\lceil -1 \right\rceil$	0	0	0	0	0
$M_6 =$	0	0	-1	0	0	0
	0	0	0	0	-1	0
	0	1	0	0	0	0
	0	0	0	1	0	0
	0	0	0	0	0	1

For a facet τ of $\mathcal{B}(1,d)$, define the map $f: \mathcal{B}(1,d) \to \Gamma_{j-1} \cup \Gamma_j$ by $f: \tau \mapsto M_d \tau$, where the operation is matrix multiplication on the facets identified as above.

First, we show that M_d maps identified facets of $\mathcal{B}(1,d)$ to identified facets of $\Gamma_{j-1} \cup \Gamma_j$. Facets of $\mathcal{B}(1,d)$ have at most 1 switch, and because $\mathcal{B}(1,d)$ is centrally symmetric, we begin by looking at half of the facets. Assume that $\tau \in \mathcal{B}(1,d)$ has $v_1 = x_1$. If τ has no switches, then it is clear that $f(\tau) = \{y_1, y_2, y_3, \ldots, y_j, x_{j+1}, x_{j+2}, \ldots, x_d\}$, which is in Γ_j . On the other hand, if τ has a switch, let $k \geq 1$ be the index of said switch. Then it is easy to see that for odd k, $\kappa(f(\tau)) = j + 1$, and for even k, $\kappa(f(\tau)) = j$. Also, $f(\tau)$ has exactly two switches. Thus $f(\tau)$ has at most two switches, and has $\kappa(f(\tau)) = j - 1$ or j.

For the *d* facets that we did not consider, let $-\tau$ denote the facet antipodal to τ , and note that $f(-\tau) = -f(\tau)$. Thus $f(\tau)$ has at most two switches, and has $\kappa(f(\tau)) = j, j - 1$, or j + 1. Therefore f maps $\mathcal{B}(1, d) \to \Gamma_{j-1} \cup \Gamma_j$.

Expanding M_d by minors along the first j rows yields $\det(M_d) = (-1)^j \det(I) = (-1)^j \neq 0$. 0. Since $|\mathcal{B}(1,d)| = |\Gamma_j \cup \gamma_j| = 2d$, we conclude that $f : \mathcal{B}(1,d) \to \Gamma_j \cup \gamma_j$ must be a bijection.

Remark 3.14. both types of maps described above map facets of ∂C_d^* to facets of ∂C_d^* . Because these bijections preserve facets, we see that $\Gamma_{i-1} \cup \Gamma_i$ and $\Gamma_i \cup \gamma_i$ are combinatorial (d-1)-manifolds.

3.2 Construction

We begin this section by defining the combinatorial balls that we will use in the triangulation.

Definition 3.15. For odd *d*, define

$$D_1 := (\bigcup_{k=0}^j \Gamma_k) * \{x_{d+1}\} \text{ and } D_2 := (\bigcup_{k=0}^{j-2})^c * \{y_{d+1}\}.$$

For even d, define

$$D_1 := (\bigcup_{k=0}^j \Gamma_k \cup \gamma_j) * \{x_{d+1}\} \text{ and } D_2 := ((\bigcup_{k=0}^{j-1} \Gamma_k)^c \cup \gamma_j) * \{y_{d+1}\}$$

' Regardless of the parity of d, by 3.5 and 3.9, we know that D_1 and D_2 are both combinatorial d-balls.

Remark 3.16. When *d* is odd, $D_1 \cap D_2 = \Gamma_{j-1} \cup \Gamma_j$. When *d* is even, $D_1 \cap D_2 = \Gamma_j \cup \gamma_j$. In either case, by 3.6, 3.10, and 3.14, $D_1 \cap D_2 \subseteq \partial D_1 \cap \partial D_2$ is a combinatorial (d-1)-manifold that has the same homology as \mathbb{S}^1 . This also means that $D_1 \cap D_2$ is path connected.

Since $D_1 \cup D_2$ is a submanifold of ∂C^*_{d+1} on the vertices $x_1, \ldots, x_{d+1}, y_1, \ldots, y_{d+1}$, we see that $\partial (D_1 \cup D_2)$ is a (d-1)-dimensional submanifold of ∂C^*_{d+1} , which is a *d*-sphere.

The above discussion shows that D_1 and D_2 satisfy the hypotheses of 3.2. Therefore, we conclude that $\partial(D_1 \cup D_2)$ is a (2d+2)-vertex triangulation of $\mathbb{S}^2 \times \mathbb{S}^{d-3}$ for all $d \geq 5$.

4 Generalizing the Construction

We will close by using induction to generate triangulations of $\mathbb{S}^i \times \mathbb{S}^{d-3}$, where $1 < i \leq \frac{d-1}{2}$. To do this, we need to define a sequence of complexes.

Definition 4.1. Define $D_1^2 := D_1$ and $D_2^2 := D_2$ as in section 3.2, and define

$$D_1^i := (\operatorname{st}(y_{d+i-2}) \cup D_1^{i-1}) * \{x_{d+i-1}\} \text{ and } D_2^i := (\operatorname{st}(x_{d+i-2}) \cup D_2^{i-1}) * \{y_{d+i-1}\}.$$

Proposition 4.2. There exists a (2d + 2i - 2)-vertex triangulation of $\mathbb{S}^i \times \mathbb{S}^{d-i-1}$, where $1 < i \leq \frac{d-1}{2}$.

Proof: We induct on *i*. For i = 2, we showed that the base case holds for all $d \ge 5$. Fix $d \ge 2i + 3$, and suppose for the sake of induction that in ∂C^*_{d+i-2} , D^i_1 and D^i_2 are two combinatorial (d + i - 2)-balls which satisfy the hypotheses of 3.2. because $\{x_{d+i-1}\}$ and $\{y_{d+i-1}\}$ are a pair of antipodal vertices, we may regard D^i_1 , D^i_2 as submanifolds of ∂C^*_{d+i-1} . Thus defining D^{i+1}_1 and D^{i+1}_2 makes sense.

Since D_1^i , st (x_{d+i-1}) , and their intersection $\cup_{k=0}^j \Gamma_k$ are all combinatorial (d+i-2) balls, so is st $(y_{d+i-2}) \cup D_1^i$. Thus D_1^{i+1} is a combinatorial (d+i-1)-ball. Similarly, D_2^{i+1} is a combinatorial (d+i-1)-ball. Note that $D_1^{i+1} \cap D_2^{i+1} = D_1^i \cup D_2^i \subseteq (\partial D_1^{i+1} \cap \partial D_2^{i+1})$, which by the inductive hypothesis, is a combinatorial (d+i-2)-manifold which has the same homology as S^i . Thus $D_1^{i+1} \cup D_2^{i+1}$ is a combinatorial (d+i-1)-manifold, which means $\partial(D_1^{i+1} \cup D_2^{i+1})$ is a (d+i-2)-submanifold of ∂C_{d+i-1}^* . Therefore, by 3.2, we see that $\partial(D_1^{i+1} \cup D_2^{i+1})$ triangulates $\mathbb{S}^{i+1} \times \mathbb{S}^{d-i-2}$, completing the proof.

A future paper in this topic might try to examine some properties of this construction, such as the face values and automorphism group of these complexes. This would give a way to compare Klee and Novik's construction to this one.

5 Acknowledgments

The Authors of this paper are supported in part by the 2018 Mathematics REU program at the University of Michigan.

References

- U. Brehm and W. Kühnel: Combinatorial manifolds with few vertices, *Topology* 26 (1987), 465-473.
- [2] G. Danaraj and V. Klee: Shellings of spheres and polytopes, *Duke Math. J.* 41 (1974), 443-451.
- [3] S. Klee and I. Novik: Centrally symmetric manifolds with few vertices, Advances in Mathematics **229** (2012), 487-500.
- [4] M. Kreck: An inverse to the Poincaré conjecture, Fretschrift: Erich Lamprecht, Arch. Math. (Basel) 77 (2001), 98-106.
- [5] F. Lutz: The Manifold Page. http://http://page.math.tu-berlin.de/~lutz/ stellar/.