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Abstract

We provide an alternative construction of a (2d+2)-vertex triangulation of S? x 973,
We generalize this construction to give a triangulation of S¥ x S4=#1,

1 Introduction

A basic question in the field of combinatorial geometry is asking for the existence of a vertex-
minimal triangulation of a combinatorial manifold. There are few manifolds for which this
is known, much less how to construct such a triangulation. For sphere products, Brehm and
Kuhnel [1] prove that, for i < j, the vertex-minimal triangulation of S" x §’ requires at least
i+ 2j + 4 vertices. Such triangulations are constructed by Lutz [5] in low-dimensional cases
with the aid of computer programs. However, such constructions are not known to exist in
general. More recently, Klee and Novik [3] found a centrally symmetric 2d-vertex triangula-
tion of S x S*72 for all pairs of integers (i, d) with 0 < i < d — 2. Their construction can
be realized as certain subcomplexes of the (d — 1)-dimensional octahedral sphere.

In the interest of gathering information about the kinds of constructions that triangulate
sphere products, in Section 3, we give an alternative construction of S? x S*2, and list some
properties of this triangulation. The construction relies on the use of Klee and Novik’s
subcomplexes, outlined in Section 2 along with other basic information concerning simplicial
complexes and combinatorial manifolds. In Section 4, we generalize this result to create
triangulations of S* x S¢3 for all pairs of integers (7,d) such that 2 < < d— 3.

2 Preliminaries

In this section, we review concepts and results concerning simplicial complexes and combi-
natorial manifolds, and state other necessary information.



A simplicial compler A on a vertex set V is a collection of subsets o C V| called faces,
which is closed under inclusion and contains {v} for all v € V. For o € A, define dim(o) :=
|o| — 1, and define the dimension of A to be the maximal dimension of the faces of A. The
facets of A are precisely the maximal faces of A with respect to inclusion. we say that A is
pure if all facets of A have the same dimension.

Let o be a face of a simplicial complex A. The link of o in A, lka(0), and star of o in

A, sta(o) are defined by
lka(o):={r—0c€A:0C7e€A}and sta(o) :={r€ A:7Uc € A}

When it is clear which complex o is in, we denote the link and star of o simply as lk(c) and
st(o), respectively.

Let A be a pure d-dimensional simplicial complex. For facets 71,..., 7, € A, we say that
the ordering (7, ..., 7x) is a shelling of A if for every 1 < i < k , the set of faces 7, — (U;;7;)
has a unique minimal element with respect to inclusion. We say that this minimal face is the
restriction of 7;, denoted r(7;). Equivalently, (71,...,7) is a shelling if for every 1 < i < k,
the complex A N (U;<;7;) is pure and has dimension d — 2.

A d-dimensional simplicial complex A is said to be a combinatorial manifold if the link of
every non-empty face of A is a triangulated (d — |o|)-dimensional ball or sphere. A combina-
torial ball is a combinatorial manifold that triangulates a ball, and likewise, a combinatorial
sphere is a combinatorial manifold that triangulates a sphere. The boundary complex of a
simplicial d-ball is a simplicial (d — 1)-sphere.

Throughout, we denote by 0C); the boundary complex of the d-dimensional cross-polytope
on 2d vertices. let {z1,22,...,Za,Y1,-..,ya} be the vertex set of IC}, where x; and y; are
antipodal vertices for all . The facets of OC} are precisely the faces of 9C; with exactly
one element taken from each antipodal pair of vertices. Thus each facet of JC; may be
uniquely identified with an xy-word of length d, and 9C} is a subcomplex of 0C},, by
adding {x4+1,Ya+1} to the vertex set of 9C).

For a facet 7 = {vy,...,uq} of OC}, we say that 7 has a switch at index i if v; and v; 44
have differing labels. Define B(7, d) by the set of facets of 0C); with at most i switches. By
definition, B(i,d) is a subcomplex of JC%. Finally, the following lemma is taken directly
from [3]. Here D; denotes the dihedral group of order 2i:

Lemma 2.1. For 0 <i < d— 1, the complex B(i,d) satisfies the following:

a) B(i,d) contains the entire i-skeleton of the d-dimensional cross polytope as a subcom-
plex.

b) B(i,d) is centrally symmetric. Moreover, it admits a vertex-transitive action of Zs X Dy
if 1 is even and of Doy if i is odd.

c) The complex of B(i,d) in the boundary complex of the d-dimensional cross polytope is
simplicially isomorphic to B(d —i — 2,d).

d) B(i,d) is a combinatorial manifold (with boundary) whose integral (co)homology groups
coincide with those of S".



e) The boundary of B(i,d) is homeomorphic to S' x S,

3 Triangulations of S? x §%73

In this section, we construct an alternative triangulation of S* x S%73 for d > 5. To do this,
we will make use of the following theorem in [4].

Theorem 3.1. Let M be a simply connected codimension-1 submanifold of S, where d >
5. If M has the homology of S'xS* ! and 1 < i < %, then M is homeomorphic to
St x St

Proposition 3.2. Let Dy and Dy be two combinatorial d-balls such that O(Dy U Dy) is a
(d — 1)-dimensional submanifold of a combinatorial d-sphere and Dy N Dy C 0Dy N 0Dy is

a path-connected combinatorial (d — 1)-manifold that has the same homology as S**. Then
0(Dy U Ds) triangulates S* x §d—i-t ford>5and1 <i< %.

Proof:  First note that D;U D, is the union of two combinatorial d-balls that intersect along
the combinatorial (d — 1)-manifold D; N Dy. Hence Dy U Dy is a combinatorial d-manifold
with boundary, and 9(D; U Ds) is a combinatorial (d — 1)-manifold.

By applying the Mayer-Vietoris sequence on (0D;\0Ds, D1 N Dy, 0D1), we see that the
complex 0D;\dD, has the same homology as S*~""'. Applying the Mayer-Vietoris sequence
on the triple (0D1\0D3,0D2\0D1,0(Dy U D3)), we obtain that d(D; U Dy) has the same
homology as S x S*"*"'. On the other hand, the complex D; U D, is simply connected,
since the union of two simply connected open subsets int(D; ), int(Dsy) with path-connected
intersection D N Dy is simply connected. We conclude from Theorem 3.1 that 9(D; U D)
triangulates S x S*7 1, 0

The above proposition provides us with a method of constructing a triangulation of
S? x §473.

3.1 Preparations

Notation 3.3. In the following we use the convention that in 0C}, x44x := z) and Yair 1= yi.
In addition, fix j = |4 ].

Definition 3.4. Let 7 be a face of dC} and let k(7) count the number of y labels in 7.
Define I';, to be the union of facets 7 in 9C} that have at most 2 switches and with x(7) = k.

It is easy to see that for 1 < k < d — 1, the complex I'y consists of d facets

=z, ra\{zn e D Uy Yieke1 ), where 1 < 1 < d.
We will now prove some properties of I'.

Proposition 3.5. The complex U}_ Iy, is a shellable (d — 1)-ball for all 0 < n < j.
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Proof: ~ We prove by induction on n. For n = 0, it is easy to see that the complex I'y is a
shellable (d— 1)-ball. Now assume that A := U}~ T} is a shellable (d —1)-ball. Note that for
any 1 < k < d, the restriction face of 7% is 7(7%) = {yr, Yrin_1}, and 78 N (A U U, 7™) =

[r(7%), 7¥], which is a shellable (d —2)-ball. Hence by the inductive hypothesis and induction
on n, Up_,T, is a simplicial (d—1)-ball that has a shelling order (73, 7{,..., 7, ... 7L, ..., 7).

O

Proposition 3.6. The complex I';_; UT'; has the same homology as St

Proof: The complex I';_; UT'; consists of 2d facets le_l, e ,T]d_l, le, cee TJd. Each facet Tf_l
has exactly two adjacent facets Tf and Tf’l in I';_y UT';. Similarly, each facet Tf has exactly
two adjacent facets T]’-Zl and Tffll in I';_; UT';. Hence the facet ridge graph of I';_; UT'; is a

2d-cycle. Thus I';_; UT; has the same homology as S*. U

Definition 3.7. For 1 < k < d—1, define 7, to be the set of facets in I',_; UT', 1 such that
vy has the same label as vy. For example, when d = 6, the following facets are in ;:

{.751, T2, X3,Y4, Y5, I6}7 {I‘l, T2, Y3, Y, Ts, x6}7 {xla Y2,Y3, T4, Ts, I‘(j},

{yla Y2,Y3,T4,Ts, yﬁ}, {yb Y2,T3,T4, Y5, y6}, {yl, T2, T3,Y4, Y5, 3/6}~

Notice that 7; contains d facets. To prove the next proposition, we recall a theorem from
Danaraj and Klee [2]:

Theorem 3.8. If a (d — 1)-dimensional simplicial complex A is shellable and each (d — 2)-
dimensional face of A is contained in at most two facets, then A is either a combinatorial
ball or a combinatorial sphere.

Proposition 3.9. The complex UiZOFk U~; is a shellable (d — 1)-ball.

Proof:  The shelling order for U{;:OF;C U, is as follows:

T T T T ,Tj“, T;ill, TJJ—’—Q, T]j-::f, o ,Tf, Tjd_H.
Note that this is similar to the shelling order of U,_,T'y. Thus we only need to show that
the terms after Tj“ comply with the rest of the shelling. For j +1 < k < d, we see that
the restriction face of 77, is 7(7F, ) = {yjs1,yj+x}, and r(7}) = {y;,yj+r-1}. Because j is
defined by the value of d, and because the starting index is determined by the value of k,
we see that the restriction face of a facet is completely determined by the facet, and is thus

unique. Therefore, the above ordering of facets is indeed a shelling order.
Now consider any (d — 2)-dimensional face p of Uizof‘k U «y;. Necessarily, p contains
(d — 1)-vertices. the final vertex is from the pair of vertices corresponding to the index
number that does not appear in p. Thus there can be at most two facets of UizoFk U
which contain p. Therefore, by 3.8, we see that either Ui:ork U ; is a combinatorial ball
or a combinatorial sphere. Because Uizofk U~; is a pure, full-dimensional subcomplex of
the boundary complex of a simplicial d-dimensional polytope, we conclude that U;_ 'y U~y;
must indeed be a combinatorial (d — 1)-ball. O



Proposition 3.10. The complex I'; U~y; has the same homology as St

Pj’OOf: The complex I'; U 'y] consists of 2d facets, 7'] ,7'] . Td 7‘ 15 7']3 Ly~~~ ,ijll,
7_]]:11 yeees T +1 Each facet 7' 1 has exactly two adjacent facets, 7'] !and Tk+1 Similarly, the

*=1 and Tk+1 For 1 < k < 7+ 1, the facets

k have two adjacent facets 7‘ “,and T k“ For Jj+ 1<k <d, the facets 7"C also have two

facets 7F i1 have exactly two adJacent facets, 7;

adJacent facets, 7F i Land 7 +1 Finally, the facet ’7' has 7¢ 1 and 7' | as adJacent facets, and
the facet 7'] 1 has 77 +1 and 7‘]]:1 as adjacent facets. Thus the facet ridge graph of I'; U v, is
a 2d-cycle. Therefore I'; U~; has the same homology as St. U

The next two lemmas demonstrate that I';_; UT'; and I'; U ; are both combinatorial
manifolds.

Notation 3.11. For a facet 7 = {v1, ..., v4} of OC, we may encode the vertices as a vector.
define v; to be 1 if v; has label z, and —1 otherwise. thus the facet {x1, o, ys, x4, ys5} of OC¥
may be interpreted as

From now on, we identify a facet 7 of 9C; by its corresponding vector.

Lemma 3.12. For odd d, there exists a bijection f: B(1,d) — I';_; UT;.

Proof: ~ For odd d, define the matrix M, to have entries my 9,1 = —1 for 1 < k < j,
My ok—d—1 = 1 for j +1 < k < d, and otherwise m,; = 0. For example, when d = 5, we see
that

-1 0 0 0 O
0 0 -1 0 O
Ms=10 0 0 0 -1
o 1 0 0 0
0O 0 0 1 O

. For a facet 7 of B(1,d), define the map f: B(1,d) — I';_1 UTL'; by f : 7 — My7, where the
operation is matrix multiplication on the facets identified as above.

First, we show that My maps identified facets of B(1,d) to identified facets of I';_; UT.
Facets of B(1,d) have at most 1 switch, and because B(1,d) is centrally symmetric, we only
need to look at half of the facets. Thus we may assume that 7 € B(1,d) has vy = zy. If 7
has no switches, then it is clear that f(7) = {y1,v2,y3, ..., ¥j, Tj11, Tj12, ..., 24}, which is in
I';. On the other hand, if 7 has a switch, let £ > 1 be the index of said switch. Then it is
easy to see that for odd k, k(f(7)) = j, and for even k, x(f(7)) =7 — 1. Also, if k #d — 1,
then f(7) has exactly two switches, and when & = d — 1, f(7) has exactly one switch, at
index j — 1. Thus f(7) has at most two switches, and has x(f(7)) = 7 — 1 or j. Therefore
f maps B(1,d) = I';_; UL,.



Next, we show that M, has nonzero determinant. because M, has a gentle slope of —1
entries on top, we can expand by minors to see that

1 00 0
. 010 -+ 0 . ,
det(My) = (=1)Ydet | |. . . . || =(=1)det(I) =(-1) #0.
000 --- 1
Since |B(1,d)| = |I'jy ULy =2d, f:B(1l,d) — I';_; UL'; must be a bijection. O

Lemma 3.13. For even d, there ezists a bijection f : B(1,d) — I'; U~;.

Proof:  Define My to be a matrix with entries given by the following: my 0,1 = —1 for
1 <k <7, mpok—q=1for j+1 <k <d, and otherwise m,;, = 0. For example, when d = 6,

-10 0 0 0 0
0 0 -1 0 0 0
0 0 0 0 —1 0
Mg = 01 0 0 0 0
0 0 0 1 0 0
|00 0 0 0 1

For a facet 7 of B(1,d), define the map f: B(1,d) = I',_1 UT; by f: 7~ My7, where the
operation is matrix multiplication on the facets identified as above.

First, we show that M,; maps identified facets of B(1, d) to identified facets of I';_; UT;.
Facets of B(1, d) have at most 1 switch, and because B(1, d) is centrally symmetric, we begin
by looking at half of the facets. Assume that 7 € B(1,d) has v; = 7. If 7 has no switches,
then it is clear that f(7) = {y1,y2,¥3, -, Yj, Tj+1, Tj42, . - ., Za}, which is in I';. On the other
hand, if 7 has a switch, let £ > 1 be the index of said switch. Then it is easy to see that for
odd k, k(f(7)) = j + 1, and for even k, x(f(7)) = j. Also, f(7) has exactly two switches.
Thus f(7) has at most two switches, and has x(f(7)) =7 — 1 or j.

For the d facets that we did not consider, let —7 denote the facet antipodal to 7, and
note that f(—7) = —f(7). Thus f(7) has at most two switches, and has «(f(7)) =7, j — 1,
or j + 1. Therefore f maps B(1,d) = T';_; UT}.

Expanding M, by minors along the first j rows yields det(My) = (—1)? det(I) = (—1)7 #
0. Since |B(1,d)| = |I';U~;| = 2d, we conclude that f : B(1,d) — I';U~; must be a bijection.
0]

Remark 3.14. both types of maps described above map facets of dC} to facets of 9Cj.
Because these bijections preserve facets, we see that I';_; UT'; and I'; U ; are combinatorial

(d — 1)-manifolds.



3.2 Construction
We begin this section by defining the combinatorial balls that we will use in the triangulation.

Definition 3.15. For odd d, define

D1 = (UiZOFk) * {I‘d+1} and D2 = (Ui;;%)c * {yd+1}'

For even d, define
D, = (UiZOFk U~;) *{2aq+1} and Dy := ((Uf;;%)l“k)c U~;) * {yas1}-

" Regardless of the parity of d, by 3.5 and 3.9, we know that D; and D, are both
combinatorial d-balls.

Remark 3.16. When d is odd, D;N Dy =T',_1UI';. When d is even, D1N Dy =T';U~;. In
either case, by 3.6, 3.10, and 3.14, D; N Dy C 9D, NODs is a combinatorial (d — 1)-manifold
that has the same homology as S'. This also means that D; N D, is path connected.

Since D; U D, is a submanifold of dC}_ | on the vertices x1,..., 2441, Y1, ..., Yit1, We see
that (D, U Ds) is a (d — 1)-dimensional submanifold of dC}, ;, which is a d-sphere.

The above discussion shows that D; and D, satisfy the hypotheses of 3.2. Therefore, we
conclude that 9(D; U Dy) is a (2d + 2)-vertex triangulation of §* x S92 for all d > 5.

4 Generalizing the Construction

We will close by using induction to generate triangulations of S¢ x S¢=3, where 1 < i < %.
To do this, we need to define a sequence of complexes.

Definition 4.1. Define D? := D; and D3 := D, as in section 3.2, and define
Dy = (st(yasi-2) U DY) * {zario} and Dy := (st(@ari—2) U Dy ") * {Yarioa }-

Proposition 4.2. There exists a (2d + 2i — 2)-vertex triangulation of S*x S*™~!, where
1<i< L
=3

Proof: ~ We induct on i. For ¢ = 2, we showed that the base case holds for all d > 5.
Fix d > 2i + 3, and suppose for the sake of induction that in 9Cy,,_,, D} and Dj are two
combinatorial (d + ¢ — 2)-balls which satisfy the hypotheses of 3.2. because {z4,-1} and
{ya4i—1} are a pair of antipodal vertices, we may regard Dj, D} as submanifolds of 9C}_, ;.
Thus defining D! and D5™ makes sense.

Since D, st(2q4.;_ 1), and their intersection U_ T, are all combinatorial (d+i — 2) balls,
80 is st(ygri_o) U Di. Thus Dit! is a combinatorial (d + i — 1)-ball. Similarly, D5 is
a combinatorial (d 4+ i — 1)-ball. Note that Di*' N D' = Di U Dy C (9D naDL™),
which by the inductive hypothesis, is a combinatorial (d + ¢ — 2)-manifold which has the
same homology as S?. Thus D{™ U Dit! is a combinatorial (d 4 i — 1)-manifold, which
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means O(D™ U D is a (d + i — 2)-submanifold of 9C%,, ;. Therefore, by 3.2, we see that
(D U Di) triangulates S x ST772 completing the proof. O

A future paper in this topic might try to examine some properties of this construction,
such as the face values and automorphism group of these complexes. This would give a way
to compare Klee and Novik’s construction to this one.

5 Acknowledgments

The Authors of this paper are supported in part by the 2018 Mathematics REU program at
the University of Michigan.

References

[1] U. Brehm and W. Kiihnel: Combinatorial manifolds with few vertices, Topology 26
(1987), 465-473.

[2] G. Danaraj and V. Klee: Shellings of spheres and polytopes, Duke Math. J. 41 (1974),
443-451.

[3] S. Klee and I. Novik: Centrally symmetric manifolds with few vertices, Advances in
Mathematics 229 (2012), 487-500.

[4] M. Kreck: An inverse to the Poincaré conjecture, Fretschrift: Erich Lamprecht, Arch.
Math. (Basel) 77 (2001), 98-106.

[5] F. Lutz: The Manifold Page. http://http://page.math.tu-berlin.de/~lutz/
stellar/.



