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1. Introduction 

HPV, or human papillomavirus, is the most prevalent sexually transmitted infection (STI) 
in the United States, with an estimated 79 million Americans infected [1]. There are over 150 
different types of HPVs, some which affect the skin and cause common warts, and others which 
affect the genital area and can be transmitted only through sexual contact. Within the genital 
HPVs there is a further breakdown of types into low-risk and high-risk. Most HPV infections are 
harmless and clear on their own; in fact, most sexually active people will become infected at 
some point and not even know it. But in some cases HPV can manifest itself and cause 
symptoms such as genital warts, which are caused by low-risk types, or it can lay dormant and 
later develop into cancer, which is primarily caused by high-risk types [2]. 
 Cervical cancer is the most common HPV-related cancer in women. Each year in the 
U.S., about 11,700 new cervical cancers are diagnosed, and it is estimated that 90% of these 
cancers are caused by an HPV infection. Several other genital cancers are often caused by 
HPV, including anal, rectal, penile, vaginal, and vulval. In addition, 70% of cancers of the 
oropharynx (back of the throat) are caused by HPVs. Oropharyngeal cancer is the most 
prevalent HPV-related cancer overall, and these cancers actually appear predominantly in men 
[3]. In total, about 40,000 cancers are diagnosed every year in sites where HPV is found, and 
HPV causes about 31,500 of these [4]. 
 A vaccine for HPV was approved in 2006, with 2 or 3 doses required for it to be fully 
effective [5]. The vaccine protects against the most common high-risk HPV types, which 
together account for about 90% of HPV-related cervical cancers, as well as the majority of other 
HPV-related cancers and genital warts [6]. Initially the vaccine was only recommended for girls, 
beginning at ages 11-12. Then in 2009 the FDA began recommending that boys also receive 
the vaccine at the same age [5]. 
 Unfortunately, the HPV vaccine has seen lower uptake rates than other child and 
adolescent vaccines in the United States. As of 2016, the CDC reports that 60% of teens ages 
13-17 had received at least 1 does of the HPV vaccine, and only 43% were fully vaccinated. 
The numbers are slightly higher among females (65% received >1 dose and 50% were fully 
vaccinated) compared to males (56% received >1 dose and 38% fully). In contrast, 88% of 
teens have received a tdap (tetanus, diphtheria, and acellular pertussis) vaccine, and 82% have 
received a meningococcal vaccine, both of which are also recommended at ages 11-12. 
Childhood vaccines have even higher uptake rates, with over 90% of teens vaccinated against 
chickenpox, hepatitis B, and MMR (measles, mumps, and rubella) [7]. 
 Experts have speculated about the reasons for this discrepancy in vaccination rates. 
Proposed explanations include the relative newness of the vaccine, the association with 
sexually-transmitted disease, and the general anti-vaccine movement, among others [8]. We 
believe that many factors play a role in the vaccination decision, and that these factors are 
largely influenced by parents’ perceptions of the disease and the vaccine itself. Thus instead of 
studying one possible reason, in this paper we aim to construct a more holistic model of the 
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vaccination decision, using the relative costs of vaccination and infection. Our two main goals 
are: 1) To use decision theory and game theory to predict parents’ decisions of whether or not 
to vaccinate their child against HPV. We draw on the work of Bauch & Earn in their paper on the 
application of game theory to childhood vaccination [9]. We use their method to calculate the 
Nash equilibria of our vaccination “game,” in which parents decide whether to vaccinate or not 
based on the relative expected payoffs of vaccination versus infection, and the prevalence of 
the disease in the population. We then group parents into three categories based on their 
preconceived opinions on HPV vaccination (preconceived here meaning before they take their 
child to the doctor) and, using results from an extensive search of previous literature, choose 
appropriate parameters for each of the three groups. 2) To couple this decisionary model to a 
simple SIS model of HPV infection with vaccination and to study the dynamics the combined 
model produces. Specifically, we wish to observe the back-and-forth interaction between the 
two models, with the decision model affecting the vaccination rate and thus the disease 
progression, and, conversely, the disease model affecting parents’ decisions via the overall 
disease prevalence. 
 
2. The vaccination decision model 

Our first goal is to create a model of the vaccination decision making process, so that we 
can produce realistic estimates of the percentage of parents who will choose to vaccinate, 
dependent upon the parameters we use. We utilize decision theory in our model because it is 
ideal for modeling situations in which an individual must choose between different options or 
“strategies” based on their relative payoffs (where payoff here represents the overall benefits 
and/or harms that result from a particular option). Logically, an individual will want to maximize 
his expected payoff or, equivalently, minimize his expected loss. 

In the context of this paper, the individual or “player” is the parent, and the two strategies 
are vaccinate (V) or do not vaccinate (NV). That is, when a parent takes his or her child to the 
doctor,  they choose either to have them vaccinated or not. Since this decision takes place in 1

the doctor’s office, we must also consider the effect of the doctor on the decision. The doctor 
also has two options: they can either recommend the vaccine or not.  2

We chose to construct this initial model using a decision theory (1 player) rather than 
game theory (> 2 players) framework because, although the parent’s decision is partially 
influenced by their doctor, we are only concerned with the parent’s chosen outcome and not the 
doctor’s. Additionally, we assume that the doctor does not change his strategy based on the 
parent’s initial preferences or chosen strategy; in other words, any given doctor is either going to 
recommend vaccination or not, regardless of the specific parent. 
 

1 We assume in our model that all vaccination decisions are made by the parent of the vaccine-recipient, 
since although vaccination is approved for boys and girls up to ages 26, most vaccinations occur in 
children under 18 
2 We define the “no recommendation” category to include doctors who may mention the vaccine but not 
suggest or advocate for it, doctors who fail to offer the vaccine (either because their office does not stock 
it or because of their personal beliefs), and doctors who explicitly advise against the vaccine 
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2.1 Constructing the decision theory matrix 

Using this approach, we can create a matrix of the expected payoffs for each of the two 
strategies, vaccinate or don’t vaccinate, and for each whether the parent receives a 
recommendation from his or her doctor. Thus we obtain the following two-by-two matrix with four 
possible outcomes: 

 Doctor 
Recommends 

Doctor Does Not 
Recommend 

Vaccin-
ate 

1 
-rv + α 

 

2 
-rv 

 

Don’t 
3 

-πp(ri + πcrc) 
 

4 
-πp(ri + πcrc) 

 

Figure 1: Decision theory-based matrix of expected costs 
 
Parameters 
rv = perceived cost/risk of vaccination 
ri = perceived cost/risk of HPV infection 
rc = perceived cost/risk of HPV-related cancer 
πp = probability of contracting HPV, given the level of vaccine coverage in the population is p 
πc = probability of HPV infection developing into cancer 
α = “boost” for agreeing with doctor 
 
1. The parent receives a doctor’s recommendation and chooses to vaccinate 

The expected payoff here is the perceived risk of vaccination, which could include any expected 
side effects or complications of receiving the vaccine, as well as any other negative 
consequences, for example if the parent believes that receiving the vaccine will give his or her 
child a false sense of security and cause him or her to be more sexually risky.  We then add a 3

constant alpha term as a “bonus” for the parent agreeing with the doctor. This could be 
interpreted as the peace of mind that comes with following the doctor’s orders, increasing the 
overall expected payoff (or, more specifically, offsetting some of the negative cost of the 
perceived risk of vaccinating).  

As is the case for all four possible outcomes in the matrix, the expected payoff is negative 
because it is a cost, not a benefit. Additionally, it’s important to note that the risks are as 
perceived by the parents. Therefore different parents will necessitate different perceived risk 

3 This belief was discredited in the paper by Mayhew et al [11], which found that girls’ risk perceptions 
immediately after vaccination were not associated with subsequent sexual risk-taking 
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parameters, and for some these may not be “accurate” from a public health perspective (for 
example, some parents might perceive the risk of vaccination to be very high, when in reality the 
HPV vaccine has been proven safe and its side effects relatively mild [10]). We discuss the 
issue of choosing appropriate parameters in section 2.4. 
 
2. The parent does not receive a doctor’s recommendation and chooses to vaccinate anyway 

The expected payoff here is the same as it is for outcome 1, but without the added alpha term, 
since in this case the doctor did not recommend the vaccine. 

3. The parent receives a doctor’s recommendation but chooses not to vaccinate 

The expected payoff here is the probability that the unvaccinated child will contract HPV at 
some point in the future times the perceived risk of HPV infection, plus the probability that an 
HPV infection will develop into cancer times the perceived risk of HPV-related cancer. 

In this initial framing, we treat the probability of infection, πp, as a fixed (constant) parameter; 
however, more realistically πp changes depending on the transmission dynamics and the 
vaccination patterns across the population, which we will examine later in the paper. 

We also note that we considered adding a negative constant term here as a “penalty” for going 
against the doctor’s recommendation. However for simplicity sake, we forgo this and note that 
we can simply adjust alpha to be higher so that it reflects the benefit of choosing to vaccinate 
given that a doctor recommends it. 
 
4. The parent does not receive a doctor’s recommendation and chooses not to vaccinate 

The expected payoff here is the same as it is for outcome 3, since the perceived risks 
associated with non-vaccination are the same regardless of whether or not the doctor 
recommends the vaccine.  
 
2.2 Calculating the Nash equilibria 

In order to proceed with the analysis of our decision theory matrix, we think of it in terms 
of mixed strategies. Thus for any given parent, instead of their two strategies being simply 
vaccinate or don’t vaccinate, the former strategy becomes their probability V of vaccinating, and 
the latter their probability 1-V of not vaccinating. We also expand the decision theory model to a 
game theoretic framework, by noting that the probability of infection, πp, in actuality depends on 
the vaccination choices of all the other parents in the population as well—as more parents 
choose to vaccinate, the risk of infection decreases. Thus, the decision theory model can be 
interpreted as a game theoretic one, where parents in the population choose their strategies 
depending on what the other parents in the population choose. With this framing, we can 
calculate the expected payoff for the strategy of vaccinating with probability V, given that the 
overall level of vaccine coverage in the population is p (so that now πp is interpreted as a 
function of p), to be 

4 



 E(V, p) = [V(-rv+ α) + (1-V)(πp(ri + πcrc))]*R + [V(-rv) + (1-V)(πp(ri + πcrc))]*(1-R)  

where R is the fraction of doctors who recommend (or probability of the doctor recommending) 
the vaccine. Cancelling terms, we obtain 

 E(V, p) = VαR + V(-rv) + (1-V) (πp(ri + πcrc)) 

 = V(-rv + αR) + (1-V) (πp(ri + πcrc)) 

We can simplify further by creating a term r which represents the relative risk of vaccination 
(minus the alpha “booster” term) versus infection.  

r = (rv - αR) / (ri + πcrc ) 

We then scale the equation by dividing out the constant (ri + πcrc) , giving us the following  4

 E(V, p) = -rV - πp(1-V) ** 

Next we pivot away from our decision theory mindset, and we view the system instead as a 
game where other players’ decisions to vaccinate or not affect each other via the overall 
disease prevalence. This will allow us to calculate a Nash equilibrium for our system. We follow 
the method of Bauch & Earn in their paper “Vaccination & the Theory of Games” [14]. 

We assume that some portion ε of population vaccinate with probability V, and the rest (1-ε) 
vaccinate with probability Q. So the overall vaccine coverage level is 

p = εV + (1-ε)Q 

The expected payoff for each strategy follows directly from equation ** 

EV = -rV - πεV + (1-ε)Q(1-V) 

EQ = -rQ - πεV + (1-ε)Q(1-Q) 

The expected payoff gain of switching strategies from Q to V is just the difference between their 
individual expected payoffs 

ΔE = EV – EQ = ( πεV+(1-ε)Q – r ) (V – Q) 

In order for strategy V to be a Nash equilibrium, ΔE must be positive for all values of the overall 
vaccination level p. (Note that as p increases, the probability πp of contracting the disease must 

4 We assume ri is constant among all parents based on the study by Kahn et al, which found no significant 
difference in “perceived severity of HPV infection” (a separate category from HPV-related disease) 
between parents who intended to vaccinate and parents who didn’t or were unsure [12]. Similarly, we 
assume rc is constant based on the study by Reiter et al, which found no difference among parents in 
their “perceived severity of cervical cancer” [13]. πc is constant because the probability of developing 
cancer (assuming no vaccination) does not vary based on parental beliefs. 
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decrease continuously, making π0 the maximum value of π). Intuitively, this means that if V is an 
equilibrium, then it is always beneficial to switch to strategy V, and then to stay with this 
strategy. This presents us with 2 cases: 

1. r > π0  

Since πp decreases strictly as p increases, if r > π0 then r > πp ∀p, so the first term in our ΔE 
equation will always be negative. Thus for ΔE to be always positive, V-Q must also always be 
negative, so V must be 0.  

This should make logical sense, since r > π0 means that the relative risk of vaccination 
outweighs the probability of contracting the disease even at its highest value (when nobody is 
vaccinated, p=0). If this is the case then it is understandable that nobody will want to vaccinate. 

2. r < π0 

If  r < π0, then there exists a p* where πp* = r, so that (πp - r) > 0 for p < p*, and (πp - r) < 0 for p 
> p*. For any Q < V, we get p = εV + (1-ε)Q < V, and for V > Q we get p > V. Thus for ΔE to be 
positive, the two terms in the equation must change signs at the same point, which occurs only 
at p*, so V = p*, where p* is the solution to πp* = r, is the Nash equilibrium in this case. 
 
2.3 Modeling changing dynamics with the replicator equation 

The Nash equilibrium gives us the steady state solution for our vaccination decision 
game with mixed strategies, when all parameters are held constant, and we don’t consider how 
the vaccine coverage and infection risk vary over time as a function of one another. In real life 
though, these two factors specifically will change as the system shifts over the course of the 
game. To deal with this, we introduce the replicator equation, a differential equation for the 
change over time in the total number of parents choosing to vaccinate. Because we only have 
two strategies, vaccinate or don’t vaccinate, the replicator equation is simply 

ẋ v = xv (1-xv) (fv - fnv)  

where xv is the portion of the parent population that chooses to vaccinate, fv is the fitness 
(expected payoff) of vaccinating, and fnv is the fitness of not vaccinating 

Substituting in the parameters from our decision matrix, we get 

ẋ v = xv (1-xv) [(-rv+ α + πp(ri + πcrc))R + (-rv + πp(ri + πcrc))(1-R)] 

This simplifies to our final replicator equation: 

ẋ v = xv(1-xv)[ αR - rv+ πp(ri + πcrc)] 
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2.4 Dividing parents into 3 groups & choosing appropriate parameters 

As mentioned earlier, different parents perceive different levels of riskiness of 
vaccination, and we believe this is the primary indicator of their vaccination decision.  To reflect 5

this variation in our model, we chose to split the population of parents of vaccine-eligible 
adolescents into three groups based on their preconceived opinions on the HPV vaccine. We 
call these groups Pro (P), Neutral (N), and Anti (A), with respect to their beliefs. 

In order to choose appropriate parameters for each of these groups to plug into our 
decision theory model and replicator equation, we conducted an extensive search of literature 
relating to parental beliefs and opinions on HPV vaccination. The literature ranged in date from 
2007 (when the vaccine had just become available) to 2016, and was mostly comprised of 
surveys of parents. Through this search, we were able to pick out reasonable parameters for the 
following three areas: the proportion of parents in each of the three belief groups; the relative 
risk perceptions for each of these groups; and the percent of doctors who recommend the HPV 
vaccine to their patients. 

 
1. Proportion of parents in Pro, Neutral, and Anti groups 

In Rosenthal et al, 153 mothers of vaccine-eligible girls were asked whether or not they believed 
“the HPV vaccine will be safe for my daughter to get.” 57% agreed, 10% disagreed, and 33% 
were neutral [18]. 

In Fang et al, data from the 2007 HINTS (Health Information National Trends Survey) was 
filtered to include responses from only parents of girls under the age of 18 (n=1,383). They were 
asked whether or not they would choose to get the HPV vaccine for their daughters. 58% said 
yes they would vaccinate, 18% said no they would not vaccinate, and 25% were unsure [19]. 

Wilson et al focused on young people rather than parents, asking 1,600 college students at two 
large Texas universities whether or not they would vaccinate if they had a daughter in the future. 
55% said yes they would absolutely vaccinate, and 20% absolutely would not  [20]. 6

Using the findings from these three studies, we estimate the proportion of parents in each group 
as follows: 

55% Pro HPV vaccine 
15% Anti HPV vaccine 
30% Neutral 

2. Relative Risk Perceptions 

5 After an extensive literature review, we conclude that demographic factors such as race, ethnicity, 
education and income level do not affect parents’ vaccination decisions [15, 16, 17]. Factors such as 
religion and vaccination history that do show a correlation with vaccination/non-vaccination are absorbed 
into our vaccination opinion categories of pro, neutral, and anti. 
6 We guess that this second statistic (the percentage who “absolutely would not vaccinate”) may be higher 
than the actual national average because of the location of the study. 
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The main parameter we wish to find for each of the three parent groups is rv, the perceived 
cost/risk of HPV vaccination. As mentioned earlier (see footnote on page 4), we can assume 
that the other risk parameters ri and rc do not vary among the groups. However, we must choose 
these parameters to be reasonable in relation to rv. 

We start by drawing from the study by Reiter et al, a survey of 889 parents of adolescent girls in 
North Carolina. The parents were asked to rate their beliefs on as number of different issues on 
a scale of 1-4, with 1 being the least and 4 being the most severe. For the sake of simplicity and 
consistency, we chose to use this scale of 1-4 for all of the risk parameters in our model. 

For the belief of the “perceived severity of cervical cancer if daughter got it,” the mean score 
was 3.7. This value was the same for both parents who decided to vaccinate their daughters 
and parents who decided not to vaccinate [21]. Thus we take rc, the perceived cost of 
HPV-related cancer, to be 3.7 for all three parent groups. 

For our rv values, we use data from Lindley et al, an analysis of the 2013 NIS-teen data 
(n=16,937). Parents of girls and boys ages 10-17 were asked to rate on a scale of 1-10, “is the 
HPV vaccine safe?” Averaging the mean scores for parents of girls and boys, we find that: 
parents whose child had received the vaccine reported a mean rating of 8.2, parents whose 
child had not received the vaccine but said they may in the future had a mean rating of 6.8, and 
parents whose child had not received the vaccine and said they definitely would not in the future 
had a mean rating of 4.3 [22]. 

We take the three groups of parents in this study to be in line with our constructed pro, neutral, 
and anti categories, respectively. Converting the ratings to our 1-4 scale using linear 
interpolation (see appendix), we get the following parameters: 

rv for Pro group = 1.6 
rv for Neutral group = 2.1  
rv for Anti group = 2.9 

When we looked into ri, the risk of HPV infection alone (ignoring any possible subsequent 
cancers), we found that this risk/cost is perceived to be minimal among all parents [23]. Thus we 
set ri, for now, to the minimum value of 1 for all three parent groups. 

Lastly we calculate πc, the probability that an HPV infection will later develop into cancer, as 
follows: The CDC reports that HPV causes 31,500 cancers per year [24]. The total number of 
Americans infected with HPV is currently about 79 million. Thus the probability of an 
HPV-positive individual developing HPV-caused cancer in any given year is 31,500 / 79 million 
= 0.04%. Multiplying this by 25 years (an approximate window of likelihood for developing 
HPV-related cancer), we get 1%, our πc parameter. 
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3. Percent of Doctors Recommending HPV Vaccine 

To obtain the approximate percent of doctors who recommend the vaccine to their patients, we 
used data from two studies: 

The first is a 2014 national survey of 776 physicians by Gilkey et al. Of these doctors, 73% 
reported that they believe the HPV vaccine to be either “very” or “extremely important” [25]. 

The second study was a follow-up to the 2010 National Immunization Survey-Teen, a random 
survey of parents of adolescents ages 13-17. Of the 3,496 respondents, 73% reported that they 
had received a doctor’s recommendation for the HPV vaccine [26]. 

We conclude that approximately 73% of doctors recommend the HPV vaccine, while the 
remaining 27% do not. 

2.5 Parent group simulations & the trade-off between ri and alpha 

In order to sufficiently exaggerate the difference between the costs of vaccination, rv, and 
the cost of cancer, rc (which should be quite a bit higher, but is diminished by the low probability 
πc of actually developing cancer) so that we obtain realistic results, we scale all the costs rv, rc, 
and ri from a 1-4 scale to a 1-1,000 scale, again using linear interpolation. 

Thus our parameters become: 
rV Pro = 1.6 → 201 
rV Neutral = 2.1 → 367.67 
rV Anti = 2.9 → 634.33 
rc (all groups) = 3.7 → 901 
ri (all groups) =  1 → 1 

 
Just as we chose ri, we must also choose our alpha value, the “boost” that comes from agreeing 
with a doctor who recommends vaccination. We set it to 2 (using our 1-4 scale), so that it is 
slightly higher than the cost of infection but significantly lower than the cost of cancer. When 
scaled to 1,000 scale, it becomes 334.33. 

Plugging these parameters into our replicator equation, we can run the simulation for each of 
our three parent groups and see the results. We keep πp, the probability of infection, constant at 
0.8, and we start each parent group at 1% vaccination (starting at 0 would not allow our 
simulations to take off). As we expect, the pro group quickly goes to 1, so that all parents are 
choosing to vaccinate. Conversely, the anti group goes to 0, so that no parents are vaccinating. 
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Figure 2: Simulation of parents’ vaccination decisions in the pro-group (left) and the anti-group (right),  
with parameters as listed above 

 
The more interesting simulation happens in our neutral group. In this case, the behavior of the 
graph and whether it goes to one or to zero depends largely on the values we chose for ri and 
alpha. With the parameters as above, the neutral group goes to 0 (no vaccination). However if 
we increase alpha to 3, the neutral group goes to 1 (complete vaccination). The model thus 
exhibits a bifurcation as we change alpha, switching from one equilibrium to another. 
 

 
Figure 3: Simulation of vaccination decisions in neutral group for α = 2 (left) and α = 3 (right) 

 
Thus we see that there is some value of alpha between 2 and 3 where this bifurcation happens. 
It turns out to be approximately 2.479. Below (left) we plot the simulation for the neutral group 
with an alpha of 2.47 and an alpha of 2.48, and see this divergence occur. 
 
This change doesn’t solely depend on alpha, though; we can also play with the value of ri and 
see a similar effect. For the neutral group, then, we conclude that there is an important trade-off 
between ri and alpha which determines the final behavior of the group, specifically if they will 
choose to vaccinate or not. We plot a heat map (right) to illustrate this trade-off. 
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Figure 4: Neutral group vaccination at α tipping point               Figure 5: Heat map of vaccination behavior for ri vs. α  
 
The blue section represents the combination of the two values where the neutral group goes to 
0 (no vaccination), while the yellow represents the values where they go to 1 (all vaccination).  
 
This heat map demonstrates the importance of the strength of a doctor’s recommendation, 
since the alpha value must be high enough to overcome a low perceived cost of infection, as in 
the case of our original choice of ri = 1. 
 
3. Incorporating our decision model into a compartmental disease model 

Now that we have our three replicator equations complete with appropriate parameters, we can 
use them with a basic SIS model with vaccination to study the disease dynamics as parents’ 
vaccination decisions evolve. Our SIS model is 

Ṡ = 𝜇 (1 − (x VP + xVN + xVA)) − 𝛽SI + 𝛾I − 𝜇S 
İ  = 𝛽SI −  𝛾I − 𝜇I  
V = 𝜇 (xVP + xVN + xVA) − 𝜇V 

where 𝜇 is the rate of entry and exit from a sexually active state (so that 1/𝜇 is the average 
lifetime duration of sexual activity), 𝛾 is the clearance rate of an infection, 𝛽 is the contact rate, 
and the xV’s are the percent who choose to vaccinate in each parent group (so max(xVP) = 0.55, 
max(xVN) = 0.3, and max(xVA) = 0.15). 

We combine these with our three replicator equations, each modified to include the appropriate 
percentage of the total parent population: 

ẋ VP = xVP (0.55 − xVP)[ αR − rVP+ πp(ri + πcrc)] 

ẋ VN = xVN (0.3 − xVN)[ αR − rVN+ πp(ri + πcrc)] 

ẋ VA = xVA (0.15 − xVA)[ αR − rVA+ πp(ri + πcrc)] 
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We let πp = I / (S+I+V), a rough approximation of the probability of infection.  7

Using the next generation matrix method, we find that R0 = 𝛽 / (𝛾 + 𝜇). 
 
According to the study by Peyton et al, before the vaccine was available the overall HPV 
prevalence in the US was about 40% [27]. We start our simulation at these endemic values of 
S0

 = 0.6, I0 = 0.4, and V0 = 0. 

We can easily work out that the endemic equilibrium (with no vaccination) occurs when 
S = (𝛾 + 𝜇) / 𝛽 = 1 / R0 

I = 1 − (𝛾 + 𝜇) / 𝛽 = 1 − (1 / R0) 
Using these equations and the baseline prevalence of 40%, we can backwards calculate our R0 
to be approximately 1.67. 
 
We now determine our remaining parameters as follows: 

𝜇: We assume that the average age of sexual debut is roughly 15, and the age of sexual exit 
(often via marriage/monogamy) is 55, giving an approximate duration of sexual susceptibility & 
transmission of 40 years. Thus 𝜇 = 1/40. 

𝛾: The clearance rate for HPV is typically between 6 months to a year [28], giving us values of 
1/0.5 = 2 and 1/1 = 1. We take the midpoint of these values, so 𝛾 = 1.5 

𝛽: Lastly, we can calculate the contact rate 𝛽 from our R0 equation with R0 = 1.67 and 𝜇 and 𝛾 as 
above. We find that 𝛽 = 2.54. 

 

We run the simulation for alpha values of 3, 2, and 2.5  

7 Although this is not the most technically accurate way to calculate πp, we believe it is actually a better 
reflection of a parent’s perception of the probability of infection, which is what our model really refers to. 
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Figure 6: Top rox: vaccination levels (left) and disease progression (right) for α = 3.  
Middle row: for α = 2. Bottom row: for α = 2.5 

 
We can see from these simulations that the behavior of the neutral parent group depends 
heavily on the value of alpha in relation to the other parameters. On the other hand, for most 
reasonable values of alpha, the pro group will always vaccinate and the anti group will not. 

13 



However, if we drastically increase alpha, say α = 4, then we can get the anti group to choose to 
vaccinate. 
 
In addition to varying our alpha parameter, we can also vary beta to study the effects that higher 
or lower contact rates would have on the disease progression. Below we plot a heat map of 
alpha  vs. beta for values ranging from 0-8, with the color of each square indicating the disease 8

prevalence after 50 years.  

 
Figure 7: Heat map of α vs. 𝛽. Decimal values displayed in the legend refer to the  
percentage of the total population in the infected compartment after 50 years 

 
As we would expect, higher values of beta with reasonably low (0 - 2.5) values of alpha cause 
the disease to persist in a state of epidemic even after 50 years. As alpha increases, though, 
more people (i.e. the neutral group parents) choose to vaccinate and the disease dies out, even 
for extremely high values of beta. 
 

4. Conclusion 

In this paper, we constructed a model of parents’ HPV vaccine decision-making, 
dependent upon whether or not their doctor recommends the vaccine. We divided the parent 
population into three categories (pro, neutral, and anti) and chose appropriate risk parameters 
for each. As we expected, for all reasonable values of alpha and ri, the pro group will choose to 
vaccinate and the anti group will choose not to, given a fixed disease prevalence of 80%. The 
neutral group’s behavior is dependent upon the balance between these two parameters, with α 
= 2.479 being the “tipping point” value when ri = 1. 
 

8 Values on heatmap refer to value of alpha before it is scaled to the 1-1,000 scale we have been using 
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When we combined this decision model with an SIS disease model, we found again that 
the neutral group’s behavior depends heavily on the exact value of alpha, and that their 
vaccination choice determines the length of time it takes for the disease to die out. For example, 
with α = 3, the neutral group will vaccinate and infection reaches zero after about 40 years. With 
a slightly lower value of α = 2, however, the neutral group will not vaccinate and it takes close to 
80 years for the disease to die out. The effect of alpha on the disease model gives us insight 
into how the strength of provider recommendation can greatly impact the course of an epidemic, 
specifically by influencing the neutral parents one way or another.  
 

We concluded our analysis by looking at how varying the value of beta (the contact rate) 
can also affect our model. We created a heatmap of alpha vs. beta, which illustrates the 
interplay between the two parameters.  

 
Our model and subsequent analyses demonstrate the nuanced effects of both alpha and 

beta, a product of the back-and-forth interaction between the disease and decision models. For 
example, a higher beta value means that the disease will initially spread more rapidly, but it will 
also encourage more parents to vaccinate due to the higher perceived probability of infection. 
Conversely, a higher alpha value will increase the payoff of vaccination (given a doctor 
recommends it), but greater vaccination rates will decrease the overall disease prevalence so 
that then the neutral group may eventually stop vaccinating (as is the case in the bottom left 
pane of Figure 6). In our simulations, we were unable to find a set of parameter values for which 
we could induce a second wave of infection, but we believe it is certainly possible that this could 
occur if vaccination wanes in response to a drop in perceived susceptibility. Thus it is crucial 
that doctors recommend the vaccine strongly and consistently, so that we can eventually reach 
the point of near or total eradication in the population and maintain this even if a new infective is 
introduced. 
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Appendix 

Using linear interpolation to convert the 1-10 scale to a 1-4 scale, where 1 maps to 4 and 10 
maps to 1, we get the equation y = -⅓ x + 4 ⅓, which we use to convert the mean values from 
Lindley et al into our rv values for each of the three parent groups. 
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