
VISUALIZING ALGORITHMS AND LARGE DATASETS

MARIA HAN VEIGA AND ZACH NORWOOD

Project description. A mathematical visualization becomes much more ex-
pressive when it is made interactive or animated. In this project, students will
build on existing tools to create a framework to generate dynamic, interactive
visualizations. Early on, we will focus on animated visualizations of standard
algorithms, possibly including some algorithms that arise in machine learn-
ing. Graph algorithms, dynamic-programming algorithms, and algorithms
that approximately solve NP-complete problems are some other examples of
what we might try to animate.

Tools to extract qualitative, human-readable information from large datasets
are more important than ever, since large datasets are so abundant. �e
visualization tools created during the �rst part of the project should be �exible
enough that we can adapt them visualize and explore large datasets (for
example, a dataset fromWikileaks such as the DNC email dump). �is will
be the focus of the second part of the project.

Prerequisites. Math 217 and some programming experience, preferably with
Python. Familiarity with D3.js or javascript would be helpful, but isn’t es-
sential. Math 416 (Algorithms) or Math 498 (Machine Learning) would be
helpful, but neither is essential.

Date: Winter 2022.
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Computations of Steady Solutions in Rayleigh-Bénard Convection 

Baole Wen 

Introduction —	The objective of this project is to utilize new advanced computational tools to 
discern the fundamental mechanisms governing the global transport of heat and momentum in an 
outstanding problem in fluid dynamics, i.e., Rayleigh-Bénard convection, the buoyancy-driven 
flow in a fluid layer heated from below and cooled from above. Specifically, we seek to elucidate 
the flow structure and heat transport properties of steady albeit dynamically unstable solutions in 
the strongly nonlinear regime. In order to push the computations to sufficiently large/small 
parameter regimes to discover the asymptotic transport behavior, the participants are expected 
to modify the existing Matlab code to a C/C++ code.  

Background and significance — Convection is buoyancy-driven fluid flow resulting from 
density variations in the presence of a gravitational field. Beyond its role in myriad engineering 
applications, convection underlies many of nature’s dynamical designs on larger-than-human 
scales, including the atmospheric and oceanic motions central to meteorology and climate science. 
A key feature of convection is heat transport, and predicting transport for large applied temperature 
gradients in the strongly nonlinear regime remains a major challenge for the field. Since the 1960s 
two distinct scaling theories have contended to quantitatively characterize the strongly nonlinear 
regime, yet no clear winner has emerged. Our recent investigations of steady roll solutions [1, 2] 
offer new evidence for one of these theories. Interestingly (and perhaps somewhat surprisingly), 
the preliminary work reveals that aspect-ratio-optimized steady roll solutions transport more heat 
than turbulent experiments or simulations at comparable parameters. This study has the potential 
to resolve the 60-year conundrum concerning asymptotic transport in turbulent convection. 

 
Figure 1: (a,b): Temperature fields for (a) direct numerical simulations of turbulent 2D convection 
and (b) the corresponding fully resolved unstable steady solution at similar parameters. Steady 
rolls comprise the backbone of turbulent convection. (c): Compensated heat flux for aspect-ratio-
optimized steady rolls and turbulent 2D & 3D direct numerical simulations and experiments.  
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Prerequisites — Linear Algebra (Math 214) and Numerical Methods (Math 371 or 471 or 571). 
Coding skills in Matlab, C/C++ or Fortran. 
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Exploring Numerical Interpolation: Tracing Points,

Numerical Stability, Applications and More

Advisor: Yabin Zhang and Hanliang Guo

LoG(M) Project Winter 2022

Let’s start with a simple puzzle. Take a look at Figure (a) below. It contains a collection of points
with numbering. Imagine that you are given a piece of paper with this figure printed on it and are asked
to uncover a shape or pattern from these points. Your very first impulse might be to use a pencil to trace
out lines or curves connecting these points following the given numbering. And then you may be able to
recognize an interesting pattern from your drawing and realize that this collection of points is not entirely
meaningless. Although this puzzle is quite easy to solve, your approach for tackling it is quite significant and
universal. In real life applications, available data is often limited and only given for certain scenarios, like the
points in the puzzle, and scientists want to use these data to predict or estimate for other more interesting
scenarios of which no data is available, like tracing out lines or curves to fill in the gap between each pair of
consecutive points in your puzzle solution. Mathematically, such estimates may be obtained via numerical
interpolation, one of the major fundamental topics of numerical methods. The numerical interpolation family
contains many different methods. And certain choices may be more suitable than others depending on the
particular applications. Figure (b) (c) and (d) below illustrate three different “drawings” done by Matlab’s
three different built-in interpolation methods. As you can tell, the drawings look quite different from each
other, and this is due to the different properties of the underlying interpolation methods.

(a) (b)

(c) (d)

Figure 1: Three different ways to trace a collection of points with given location and order. Figure (b),
(c) and (d) are generated via Matlab’s built-in interp1() function with different choices of interpolation
methods.

What to expect? In this project, we will explore various interpolation methods and some applications in
three stages:
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• Stage I: get to know them, implement them and understand their pros and cons. We will investigate
the cost, accuracy and stability of the methods. (We will improve our implementations by breaking
them.)

• Stage II: use the interpolation methods to build a Matlab app that connects a given collection of points
on the plane satisfying users’ special requests, e.g., closed curve with continuous first and second order
derivatives.

• Bonus Stage: use the app to create geometry description for physical problems and solve them. Ex-
amples include two-dimensional viscous flow in confined geometry and acoustic wave scattering. We
will formulate the problems as boundary integral equations (BIEs) and solve them. Partucularly, the
app will convert a collection of data points to a suitable description for the boundary of the BIE.

What kind of skill set is needed to be on-board?

• Multi-variable calculus and linear algebra.

• Some experience in differential equations.

• Some experience in coding.

• Some experience in numerical methods will be a big plus but we will introduce concepts such as stability
and go through definitions such as Lagrange interpolation in details.

• Curiosity and passion!
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LOG(M) EXTREMAL VARIETIES
PROJECT DESCRIPTION

TIM RYAN AND JANET PAGE

One major element of the historical study of (algebraic) surfaces has been the study of the
lines that lie on each surface. Over fields of characteristic 0, the situation is relatively well
understood. Over fields of positive characteristic, there have been recent developments showing
that the situation is very different. In this project, we will explore the geometry of certain
surfaces with extremely large numbers of lines in positive characteristic.

To be more explicit, we will start with the case where our field has characteristic 0. Let
f ∈ R[x, y, z] be a polynomial of degree d in three1 variables. The points where f vanishes
determines a surface S in R3, i.e.

S = {x⃗ ∈ R3
∶ f(x⃗) = 0}.

One interesting feature of surfaces is the number of lines they contain. If d > 3, then for a
general f , the surface S contains no lines. When S is smooth (and defined over a field of
characteristic 0), the number of lines on S is bounded above by 11d2 − 28d + 12.

If we instead let our field be a field of positive characteristic p, (for example, think about
Z/pZ), then there are surfaces that are known to wildly violate this bound. In particular, a
recently studied class of surfaces, called extremal surfaces, are known to have (d2 − 3d + 3)d2

many lines. Extremal surfaces are very approachable as they can be defined in terms of linear
algebra. These surfaces and their configurations of lines have deep connections to arithmetric
geometry, combinatorics, and coding theory.

In this project, we will study the configurations of lines on extremal surfaces. More specifi-
cally, students will aim to classify the sizes of (maximal) sets of skew lines, i.e. the sizes of sets
of lines where all of the lines are disjoint from one other. The team will use the algebra and
geometry of the surfaces but may also use statistical techniques such as Markov Chain Monte
Carlo methods to approach this problem. Time permitting, this project has several further
directions. In parallel to this, we will building a code base for the current and future study of
these surfaces.

Prerequisites: Math 412 or Math 493 or equivalent

1In reality, we will be working with four variables, because we will be working on something called projective
space, and we sometimes prefer to think about about algebraically closed fields like C instead of R.
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