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Abstract

In this project, we are interested in approximating permanents of positive
semidefinite Hermitian matrices. Specifically, we find conditions on positive
semidefinite Hermitian matrices such that we can generalize the algorithm de-
scribed in Sections 3.6 - 3.7 of [1] to matrices satisfying these conditions.

1 Introduction

1.1 Permanent

Definition 1.1. Let A = (aij) be an n× n real or complex matrix. We define
the permanent of A by

perA =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where the sum is taken over the symmetric group Sn of all permutations σ :
{1, · · · , n} → {1, · · · , n}.

In our REU project, we consider only positive semidefinite Hermitian ma-
trices. In that case, it can be shown that perA is a real number and, moreover,
per A can be approximated. Hermitian means for all i, j, ai,j = aj,i and pos-
itive semi-definite, means for a hermitian matrix that for all complex vectors
Z,
∑

1≤i,j≤n ai,jzizj ≥ 0. In general the best known algorithm to compute a

Permanent exactly runs in 2n ·n2 time, which is why we are interested in approx-
imating the Permanent efficiently. The Permanent of these types of matrices is
of use in quantum physics and quantum computations.

1.2 Professor Barvinok’s Approximation Algorithm

Given an n × n Hermitian Positive Semi-Definite Matrix A, we shall consider
the polynomial g(z) = per(I + z(A− I)), where I is the n× n identity matrix.
Note that

g(0) = perI = 1, g(1) = perA (1)
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Hence the quantity we are interested in approximating is g(1).
Let β be a number such that for all z ≤ β, g(z) 6= 0
Now define

f(z) = ln(g(z)) (2)

(Choose a continuous branch) and let

Tm(z) = f(0) +

m∑
k=1

f (k)(0)

k!
zk (3)

be the mth degree taylor polynomial of f centered at 0. Then

|f(1)− Tm(1)| ≤ n

(β − 1)βm(m+ 1)
(4)

see Lemma 2.2.1 in [Ba16] or Lemma 7.1 in [Ba17]. Note that the error of this
approximation goes down exponentially fast if β ≥ 1 and to achieve an error
≤ ε we can choose

m = O(ln
n

ε
) (5)

with m from equation 3. Computing

f(0), f (1)(0), · · · , f (m)(0) (6)

reduces to computing

g(0), g(1)(0), · · · , g(m)(0) (7)

reference in Section 2.2.2 of [Ba16] or section 7.1 of [Ba17]. Recall G(0) = 1
and denoting δi,j = 1 if i = j and 0 else.
Now for k > 0 we get

g(k)(0) =
dk

dzk

∑
σ∈Sn

n∏
i=1

(δiσ(i) + z(aiσ(i) − δiσ(i))|z=0 (8)

=
∑
i1,···ik

∑
σ∈Sns.t.σ(i)=ifori6=i1,··· ,ik

(ai1σ(i1) − δi1σ(i1) · · · (aikσ(ik) − δikσ(ik)

(9)
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Another way to calculate these are if we let B = A− I and then for any subset
I ⊂ (1, · · · , n) and let BI denote the principal sub matrix determined by I such
that bi,j has i, j ∈ I. Now we can write

g(k)(0) = k!
∑

I⊂(1,··· ,n):|I|=k

per(BI) (10)

Rysers method runs in n2 · 2n and computing g(k)(0) by (10) gives us
(
n
k

)
k22k

complexity. This gives us a quasi-polynomial complexity algorithm for approx-
imating per A if we use k ∼ O(lnn). If we indeed have that all the roots of
g(z) are outside the unit disc, we obtain an efficient (though more complicated)
algorithm for approximating per A.

1.3 Approach to g(z) (suggested by Prof. Barvinok)

Instead of considering g(z), we consider another related polynomial

h(z) = hA(z) = per(I + zA), (11)

which satisfies

g(z) = (1− z)nh(
z

1− z
) (12)

and

g(
z

1 + z
) =

1

(1− z)n
h(z). (13)

It can be shown that the map z → z
1+z takes B((0, 0), r)→ B((− r2

1−r2 , 0), r
1−r2 )

for r ≤ 1, so determining where h is zero free can imply where g is zero free.
For example, if we can show that h(z) is zero free inside |z| = 0.5, then we know
that g(z) is zero free inside |z| = 1

3 . Therefore, we are trying to find a lower
bound on the magnitude of the roots of h(z).
Looking back to h(z), we can write

h(z) =

n∑
k=0

hkz
k, (14)

where h0 = 1 and hk = hk(A) is the sum of all k × k principal subpermanents
of A (there are

(
n
k

)
of them):

hk(A) =
∑

I⊂1,···n
|I|=k

perAI , (15)

where AI is the k × k submatrix of A consisting of the entries in the rows and
columns indexed by i ∈ I. Since AI are positive semidefinite Hermitian, we
conclude that hk(A) are non-negative real. We see that compared to g(z), the
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coefficients of h(z) have a nice interpretation.
Prof. Barvinok introduces a nice integral representation in Section 3.1.4 of [2].
We follow his representation here: given an n × n positive definite Hermitian
matrix A = (aij), we can find linear functions f1, · · · , fn : Cn → C such that

aij =

∫
Cn

fif̄j dµn, (16)

where µn is the standard Gaussian measure in Cn with density

1

πn
e−‖z‖

2

where ‖z‖2 = |z1|2 + · · ·+ |zn|2 for z = (z1, · · · , zn).

The measure is normalized in such a way that

E‖zi‖2 = 1 for i = 1, · · · , n and Eziz̄j = 0 for i 6= j.

We can pick linear functions f1, · · · , fj in such a way: given A positive definite
Hermitian and rank n, we can write A = BB∗ for some matrix n×n matrix B.
Therefore, we have that aij =

∑n
k=1 bik

¯bjk, then we can pick fj =
∑n
k=1 bjkzk.

If we use this integral representation, we have nice representations for both the
per A and hk(A):

perA =

∫
Cn

|f1|2 · · · |fn|2 dµn (17)

hk(A) =

∫
Cn

ek(|f1|2, · · · , |fn|2) dµn, (18)

where
ek(x1, · · · , xn) =

∑
1≤i1<···<ik≤n

xi1 . . . xik

is the k-th elementary symmetric polynomial in x1, · · · , xn.
Note that ek is a homogeneous polynomial of degree k, the integral (18) can be
reduced to

hk(A) =
(k + n− 1)!

(n− 1)!

∫
S2n−1

ek(|f1|2, · · · , |fn|2) dν, (19)

where S2n−1 is the unit sphere in R2n and ν is the rotationally invariant prob-
ability (Haar) measure on S2n−1.

2 Theoretical Results

2.1 2 by 2 Case

Proposition 2.1. Given an 2 × 2 Hermitian positive semidefinite matrix A
such that the Frobenius norm of A is less that

√
2, then all the roots of G(z) are

outside unit disc.
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Proof. For the proof of this proposition, we can directly work with gz.

We write A =

[
γ α− βi

α+ βi δ

]
, with α, β, γ, δ real numbers. By Sylvester

criterion and the restriction on the Frobenius norm, we have that

2α2 + 2β2 + γ2 + δ2 < 2 (20)

γ > 0 (21)

γδ − α2 − β2 > 0 (22)

From (21) and (22), we can easily see that δ > 0. Now we calculate g(z). We
have that

g(z) = (γz − z + 1)(δz − z + 1) + (αz + βiz)(αz − βiz)
= [(γ − 1)(δ − 1) + α2 + β2]z2 + (γ + δ − 2)z + 1. (23)

Let λ1, λ2 be two roots of g(z) (counting multiplicities), then we have

λ1λ2 =
1

(γ − 1)(δ − 1) + α2 + β2
(24)

We want |λ1| > 1, |λ2| > 1. Since λ1 = λ̄2, we have |λ1| = |λ2|, so it is
equivalent to

|λ1λ2| > 1,

i.e.,

α2 + β2 + (γ − 1)(δ − 1) < 1

equivalently,

γδ + α2 + β2 < γ + δ (25)

By (20), we have that 2γδ < 2, which implies γδ < 1. So,

γδ + α2 + β2 < 2γδ

< 2
√
γδ

≤ γ + δ

From this proposition, we can see that
√

2 is the sharp bound on the Frobenius
norm.

2.2 Rank 1 Case

Proposition 2.2. Given an n×n rank 1 positive semidefinite Hermitian matrix,
A, such that the Trace of A ≤ 1 then all the roots of h(z) are outside the unit
disc.
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Proof. Given these properties of A, we can write A = BB∗ for a complex vector
B. From (16) we know we can find linear functions f1, · · · , fn : Cn → C such
that aij =

∫
Cn fif̄j dµn. However since A is rank 1, we can do better and find

linear functions from C→ C with the same properties except now we integrate
over C. One can check that the functions

fi = Bi · z, ∀i (26)

satisfy the desired property. Now if we consider the Eneström - Kakeya Theo-
rem, see Chapter 8 of [4], which states that the roots of a complex polynomial
P =

∑n
i=0 ai ∗ zi lie outside the disc z = α where α = max(ai+1

ai
), we will be

interested in the ratios of (ai+1

ai
). Recalling formula (19) we can rewrite this

ratio as

(k+n)!
(n−1)!

∫
S2n−1 ek+1(|f1|2, · · · , |fn|2) dν

(k+n−1)!
(n−1)!

∫
S2n−1 ek(|f1|2, · · · , |fn|2) dν

(27)

=
(k + n)

∫
S2n−1 ek+1(|f1|2, · · · , |fn|2) dν∫

S2n−1 ek(|f1|2, · · · , |fn|2) dν
(28)

Now using the below inequality and monotonicity of the integral we get
ek+1(x1, · · · , xn) ≤ x1+···+xn

k+1 ek(x1, · · · , xn)

≤ sup{|f1|2 + · · ·+ |fn|2}(k + n)

(k + 1)
(29)

So if we have

sup{|f1|2 + · · ·+ |fn|2} ≤
c

n
(30)

for some c we get that h is zero free outside the disc of radius c. Now in the
rank 1 case, since we are integrating over C rather than Cn, n = 1 so we need
sup{|f1|2 + · · ·+ |fn|2} ≤ c over the unit disc.

n∑
i=1

|fi|2 =

n∑
i=1

|Bi · z|2 =

n∑
i=1

|Bi|2 = Trace(A) (31)

where the 3rd inequality comes from the fact we are integrating over the disc.
Hence, if Trace(A) ≤ c we get h is zero free in the disc |z| = c

Proposition 2.3. If we are given a rank 1, positive semidefinite Hermitian
matrix, A, such that Trace(A) < r for some r < 1 then g(z) is zero free in the

ball B((− r2

1−r2 , 0), r
1−r2 )

Proof. This is an immediate consequence of Proposition 2.2 and the previously

mentioned fact that the map z → z
1+z takes B((0, 0), r)→ B((− r2

1−r2 , 0), r
1−r2 )

for r ≤ 1
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2.3 General Case

Proposition 2.4. Given an n× n Hermitian positive semidefinite matrix such
that Trace(A) ≤ 1

4 then all the roots of G(z) are inside the ball B(( 4
3 , 0), 23 ),

which implies that G(z) is zero free inside |z| = 2
3 .

2.3.1 Set Up

Let L(z) = per(Iz+A) and note that this is a polynomial in terms of z. Hence,

L(z) =

n∑
k=0

Lk ∗ zk (32)

One can see that Lk is the sum of all (n−k)× (n−k) principal sub permanents.
Using the fact that Per(cA) = cnPer(A) where n is the dimmension of A we
can rewrite

G(
1

1 + z
) = (

1

z + 1
)n · L(z) (33)

The fujiwara theorem [3] says all the roots of a polynomial, P (z) =
∑n
k=0 ak ·zk

lie inside the disc of radius 2 · max{an−1

an
,(an−2

an
)

1
2 ,(an−3

an
)

1
3 ,..., ( a0

2·an )
1
n }. Now

since we are working with L, an = Ln = the constant term in L(z) which is 1.

This simplifies this formula to 2∗max{an−1, (an−2)
1
2 , (an−3)

1
3 , · · · , a02

1
n }, where

ai is the sum of all (n-i)x(n-i) subpermanents.

2.4 Maximum Value of Coefficients

To find the maximum value of the subpermanents we may consider only real
valued matrices, since if given a matrix with complex numbers, we can just take
the norms of all of the entries and the permanent will increase. Next, since the
matrix is positive semi definite we know that

|ai,j | ≤
√
ai,i · aj,j (34)

Since we are maximizing and all the values are positive, increasing the values
just increases the permanent, so let the above inequality be an equality.

Now consider one k × k principal submatrix, call this B.

Per(b) =
∑
σ∈Sk

k∏
i=1

bi,σ(i) (35)

now plug in bi,j =
√
bi,i · bj,j and we get

=
∑
σ∈Sk

k∏
i=1

√
bi,i · bσ(i),σ(i) =

∑
σ∈Sk

√√√√ k∏
i=1

bi,i · bσ(i),σ(i) (36)
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Now since it’s a permutation map every bi,i appears exactly twice in the product,
so this is equal to

∑
σ∈Sk

k∏
i=1

bi,i = k!

k∏
i=1

bi,i. (37)

Now we sum this up for all possible principal submatrices. This yields the
sum of all subpermanents is ek(a1,1, ..., an,n), now we want to maximize this
subject to Tr(A) ≤ .25 to find an upper bound.
Using the Lagrange multiplier method we get

∇ek(a1,1, ..., an,n) = λ · ∇(

n∑
i=1

ai,i − .25)&

n∑
i=1

ai,i = .25 (38)

so setting the partials equal for all i, we get:

ek−1(a1,1, .., ai,i, ..., an,n) = λ, ∀i (39)

Where the bar in the ek means that term is missing. This implies for all i,j

ek−1(a1,1, .., ai,i, ..., an,n) = ek−1(a1,1, .., aj,j , ..., an,n) (40)

.
The L.H.S. of this is the same as the R.H.S. except anything on the L.H.S. that
has a j is replaced with an i on the R.H.S.. Now when we set these equal, cancel
all terms on both sides that have neither an i or j. We will be left with

c · ai,i = c · aj,j (41)

where the c is some products of the diagonal elements. If all diagonal elements
are non zero, we get c is nonzero and hence ai,i = aj,j .

If we do get c equal to zero, there is an α such that aα,α = 0.
Since our constrained optimization problem is symmetric with respect to the
variables, assume it is an,n and now we want to maximize ek(a1,1, ..., an−1,n−1)

subject to
∑n−1
i=1 ai,i = 1.

Repeat this argument until we get all nonzero terms(note once we get to just
one variable, it has to be .25 since the trace is .25).

So we get our solution must be of the form

a1,1 = a2,2 = ... = am,m =
.25

m
&am+1,m+1 = am+2,m+2 = ... = an,n = 0 (42)
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This is optimized for m = n since if k > m then the sum of all k sub permanent
is zero while its always nonzero for m = n, now if k < m < n, the value of ek is(
m
k

)
· ( 1
m )k.

and writing (
m

k

)
· ( .25

m
)k

?
≤
(
n

k

)
· ( .25

n
)k (43)

⇐⇒ m!

(m− k)! · k!mk

?
≤ n!

(n− k)! · k!nk
(44)

⇐⇒ m

m
· m

m− 1
· · · m

m− k + 1

?
≤ n

n
· n

n− 1
· · · n

−k + 1
(45)

And term by term the R.H.S. is bigger, so it is maximized with m = n.
So now we see the max value of these subpermanents is when the matrix has all
its entries = 1

n . The sum of all kxk subpermanents of this matrix is
(
n
k

)
times

the value of each subpermanent which is k! · ( .25n )k which becomes n!
(n−k)!nk4k

and this is less than ( 1
4 )k for all k from 1 to n

2.4.1 Actual Bound

Plugging back into the Fujiwara bound, we see that all the roots of L(z) are in
a disc of radius 1

2 . Now recalling that

G(
1

1 + z
) = (

1

z + 1
)n · L(z) (46)

So if L is zero free in the disc of radius 1
2 , since the map 1

1+z is conformal it

sends the circle |z| = 1
2 to B(( 4

3 , 0), 23 ). So all the zero’s of G must be inside
this ball.

3 Empirical Results

The following are plots for the roots of G(z) for random P.S.D. Hermitian Ma-
trices where Tr(A) = nα

Dimension = 7:
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Dimension = 10:

These pictures show what we represented in 2.3, and how with a small
enough trace these roots cluster in a circle around the point (1, 0). What they
also show is that there is some more room in our bounds and there may be a
way to increase the bound to if the Trace(A) = nα then we still get nice bounds
on the roots rather than just α = 0. We are hopeful of this result since the
pictures look nearly identical even though the dimension changed.
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