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GOAL OF THE LECTURE

• Review of Mathematical Theory developed for the analysis of the behavior
of Large Populations

minimizing costs or maximizing rewards in a random environment

• Optimal Control problems in Very High Dimension

when the control decisions are made by a single decision maker

• Game Theory (Multiperson Decision Theory) for a Very Large number
of individuals / agents / players

Analysis of situations in which the cost/reward of a decision maker depends

not only on his own actions but also on those of others



WHAT KIND OF "MATHEMATICAL" MODEL?

▶ Finite number of agents, say N
▶ Traders, managers, households, consumers, birds in a flock, pedestrians,

countries, . . .
▶ We’ll eventually try to shoot for N >> 1 (large games) !

▶ Each agent has a quantitative objective, say J i for agent i
▶ Expected profit, savings, consumption, energy spent, CO2 emissions, travel

time, trade balance, foraged food, . . .
▶ Each individual is rational and tries to maximize/minimize their objective

▶ Each player is pro-active
▶ Each individual action influences the outcome (and the objective

costs/rewards)
▶ In non-cooperative models, each individual agent optimizes selfishly

▶ So what happens to the overall system?
▶ Does it reach an equilibrium?
▶ What kind of equilibrium?

• reasonable / rational?
• erratic / chaotic / irrational?

▶ Could we end-up with an instance of rational irrationality?



MODELS OF COMPETITION: NASH EQUILIBRIA

▶ Say player i takes action αi ,
▶ Their cost J i depends upon the actions α1, · · · , αN of ALL the players

J i = J i (α1, · · · , αN)

▶ A strategy profile (α̂1, · · · , α̂N) is a Nash equilibrium if
for every i and feasible action αi

J i (α̂1, · · · , α̂i−1, α̂i , α̂i+1, · · · , α̂N) ≤ J i (α̂1, · · · , α̂i−1, αi , α̂i+1, · · · , α̂N)

whatever i = 1, · · · ,N is !
▶ In other words,

the system is in a Nash equilibrium if any player trying to deviate from their action
cannot end up better off !

▶ Not traditional minimization (not the typical steady state found in physics)
▶ Identification: what should these equilibria look like?
▶ Exisence: in fact, they may not exist
▶ Uniqueness: when they do, they are in large numbers, often a continuum
▶ Computation: difficult, both mathematically and numerically
▶ Why should a system settle in a Nash equilibrium? Which one?



MODEL OF COOPERATION

Nash Equilibria vs Social Optimality

If agents take actions α1, · · · , αN , Social Cost is defined as:

JSC(α1
, · · · , αN ) =

1
N

[
J1(α1

, · · · , αN ) + · · · + JN (α1
, · · · , αN )

]
▶ If (α̂1, · · · , α̂N ) is a Nash Equilibrium (NE)

JSC(α̂1
, · · · , α̂N )

is the (average) cost to the population for settling in the Nash Equilibrium

▶ A Central Planner could minimize the social cost and find

(α1∗
, · · · , αN∗) = arg inf

(α1,··· ,αN )
JSC(α1

, · · · , αN )

JSC(α1∗, · · · , αN∗) is the minimal social cost ! Unfortunately, it is rarely a Nash equilibrium
▶ How bad / suboptimal can Nash equilibria be?

PoS =
inf

(α̂1,··· ,α̂N ) NE JSC(α̂1, · · · , α̂N )

JSC(α1∗, · · · , αN∗)

quantifying how much worse the best Nash
equilibrium is

Price of Stability

PoA =
sup

(α̂1,··· ,α̂N ) NE JSC(α̂1, · · · , α̂N )

JSC(α1∗, · · · , αN∗)

quantifying how much worse the worst Nash
equilibrium is

Price of Anarchy
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COMPUTATIONAL ISSUES

Very difficult to compute Nash Equilibria even if N is only reasonably large
▶ How large is large depends upon the complexity of the model

▶ Static vs dynamic models
▶ Complexity of the dynamics (for each time period)
▶ Finite states vs continuous states
▶ Continuous time (systems of ODEs & PDEs)
▶ Randomness (systems of SDEs & SPDEs)

▶ New industry for algorithm development to compute Nash Equilibria
▶ Even for small (say N = 2) deterministic and static games

▶ Emergence of a new field: Computational Game Theory
Mathematicians are loosing even more ground!



BIRD FLOCKS ARE AMAZING, AREN’T THEY?



ENGINEERING APPLICATIONS: CROWD MOTION



CONGESTION & PANIC EXIT OF A ROOM
LEFT: WIT NO CONGESTION, RIGHT: WITH SOME CONGESTION.
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FIGURE: Left: Initial distribution m0. Right: Time evolution of the total mass of the
distribution mt of the individuals still in the room at time t without congestion
(continuous line) and with moderate congestion (dotted line).



ROOM EXIT DENSITIES
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ROOM EXIT DENSITIES
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ENGINEERING APPLICATIONS: CYBER SECURITY

Mean Field because the probability that my station will be infected depends upon the proportion of

stations already infected.

Ditto for spread of infectious diseases, bank runs, ......

Need for a Central Decision Maker? PoA?



ENGINEERING APPLICATIONS: BRAIN FUNCTIONS

Synchronization of circadian rhythms in SupraChiasmatic Nucleus (SCN)
Nobel Prize for Hall, Rosbash and Young

Can study Jet Lag Recovery as MFG!



The Mean Field Game Strategy & the Mean Field Game
Problem



N -PLAYER STOCHASTIC DIFFERENTIAL GAMES

Assume Mean Field Interactions (symmetric game)

dX N,i
t = b(t ,X N,i

t , µN
XN

t
, αi

t )dt + σ(t ,X N,i
t , µN

XN
t
, αi

t )dW i
t i = 1, · · · ,N

where µN
XN

t
is the empirical measure µN

x = 1
N
∑N

i=1 δx i

Assume individual i tries to minimize

J i (α1, · · · ,αN) = E
[ ∫ T

0
f (t ,X N,i

t , µN
XN

t
, αi

t )dt + g(XT , µ
N
XN

T
)

]
Search for Nash equilibria
▶ Very difficult in general, even if N is small
▶ ϵ-Nash equilibria? Still hard.
▶ How about in the limit N → ∞?

Mean Field Games 2006 Lasry - Lions (MFG) Caines - Malhamé - Huang (NCE)



PROPAGATION OF CHAOS & MCKEAN-VLASOV SDES

System of N particles X N,i
t at time t with symmetric (Mean Field) interactions

dX N,i
t = b(t ,X N,i

t , µN
XN

t
)dt + σ(t ,X N,i

t , µN
XN

t
)dW i

t , i = 1, · · · ,N

where µN
XN

t
is the empirical measure µN

x = 1
N
∑N

i=1 δx i

Large population asymptotics (N → ∞)

1. The N processes XN,i = (X N,i
t )0≤t≤T become asymptotically i.i.d.

2. Each of them is (asymptotically) distributed as the solution of the McKean-Vlasov
SDE

dXt = b(t ,Xt ,L(Xt ))dt + σ(t ,Xt ,L(Xt ))dWt

Frequently used notation:

L(X) = PX distribution of the random variable X .

Classical result (see e.g. Sznitman), with renewed wave of interest (Lacker, Crowell,
Bayraktar-Ekren-Zhou)



MFG PARADIGM

A typical agent plays against a field of players whose states he/she feels through the statistical
distribution distribution µt of their states at time t

1. For each Fixed measure flow µ = (µt ) in P(Rd ), solve the standard stochastic control
problem

α̂ = arg inf
α∈A

E
{∫ T

0
f (t, Xt , µt , αt )dt + g(XT , µT )

}
subject to

dXt = b(t ,Xt , µt , αt )dt + σ(t ,Xt , µt , αt )dWt

2. Fixed Point Problem: determine µ = (µt ) so that

∀t ∈ [0, T ], L(X α̂
t ) = µt .

µ or α̂ is called a solution of the MFG.

Once this is done one expects that, if α̂t = ϕ(t, Xt ),

α
j∗
t = ϕ

∗(t, X j
t ), j = 1, · · · , N

form an approximate Nash equilibrium for the game with N players.



THE ANALYTIC (PDE) APPROACH TO MFGS

For fixed µ = (µt )t , the value function

Vµ(t, x) = inf
(αs )t≤s≤T

E
[∫ T

t
f (s, Xs, µs, αs)ds + g(XT , µT )

∣∣Xt = x
]

solves a HJB (backward) equation

∂t V
µ(t, x) + inf

α
[b(t, x, µt , α) · ∂x Vµ(t, x) + f (t, x, µt , α)]

1
2

trace[σ(t, x)†σ(t, x)∂2
xx Vµ(t, x)] = 0

with terminal condition Vµ(T , x) = g(x, µT )

The fixed point step is implemented by requiring that t → µt solves the (forward)
Fokker-Planck-Kolmogorov equation

∂tµt =
1
2

trace[σ(t, x)†σ(t, x)∂2
xxµt ] + div[b(t, x, µt , α) · ∂x Vµ(t, x)µt ]

This is also a nonlinear PDE because µt appears in b ......

System of strongly coupled nonlinear PDEs! Time goes in both directions



THE PROBABILISTIC APPROACH

Proof of my Commitment to the FIeld
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and includes original material and applications with explicit examples throughout, 
including numerical solutions.
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CLASSICAL STOCHASTIC DIFFERENTIAL CONTROL

inf
α∈A

E

[∫ T

0
f (t ,Xt , αt )dt + g(XT , µT )

]
subject to dXt = b(t ,Xt , αt )dt + σ(t ,Xt , αt )dWt ; X0 = x0.

▶ Analytic Approach (by PDEs)
▶ HJB equation

▶ Probabilistic Approaches (by FBSDEs)

1. Represent value function as solution of a BSDE
2. Represent the gradient of the value function as solution of a FBSDE

(Stochastic Maximum Principle)



I. FIRST PROBABILISTIC APPROACH

Assumptions
▶ σ is uncontrolled
▶ σ is invertible

Reduced Hamitonian

H(t , x , y , α) = b(t , x , α) · y + f (t , x , α)

For each control strategy α = (αt )0≤t≤T with associated state Xα, solve BSDE

dYt = −H(t ,Xt ,Ztσ(t ,Xα
t )−1, αt )dt + Zt · dWt , YT = g(Xα

T ),

and denote its solution (Yα,Zα). Then

Yα
0 = J(α) = E

[∫ T

0
f (t ,Xα

t , αt )dt + g(Xα
T , µT )

]
.

So by comparison theorems for BSDEs, optimal control α̂ = (α̂t )0≤t≤T given by:

α̂t = α̂(t ,Xα
t ,Zα

t σ(t ,Xα
t )−1),

with
α̂(t , x , y) ∈ argminα∈AH(t , x , y , α)

and the optimum is Y α̂
0 = J(α̂).



II. PONTRYAGIN STOCHASTIC MAXIMUM APPROACH

Assumptions
▶ Coefficients b, σ and f differentiable

Hamitonian

H(t , x , y , z, α) = b(t , x , α) · y + σ(t , x , α) · z + f (t , x , α)

For each control α solve BSDE for the adjoint processes Y = (Yt )t and Z = (Zt )t

dYt = −∂x H(t ,Xt ,Yt ,Zt , αt )dt + Zt · dWt , YT = ∂x g(XT )

Then, optimal control α̂ given by:

α̂t = α̂(t ,Xt ,Yt ,Zt ), with α̂(t , x , y , z) ∈ argminα∈AH(t , x , y , z, α)



II. PONTRYAGIN STOCHASTIC MAXIMUM APPROACH (CONT.)

▶ Necessary Condition
▶ If α̂ = (α̂t )0≤t≤T is an optimal control, then

H(t ,X α̂
t ,Y α̂

t , α̂t ) = inf
α∈A

H(t ,X α̂
t ,Y α̂

t , α)

i.e. α̂ minimizes the Hamiltonian along the optimal trajectory.

▶ Sufficient Condition
▶ f convex in (x , α) and g convex
▶ If α̂ = (α̂t )0≤t≤T is an admissible control satisfying

H(t ,X α̂
t ,Y α̂

t , α̂t ) = inf
α∈A

H(t ,X α̂
t ,Y α̂

t , α)

then it is optimal.



SUMMARY

In both cases (σ uncontrolled), need to solve a FBSDE{
dXt = B(t ,Xt ,Yt ,Zt )dt +Σ(t ,Xt )dWt ,

dYt = F (t ,Xt ,Yt ,Zt )dt + Zt dWt

First Approach

B(t , x , y , z) = b
(
t , x , α̂(t , x , zσ(t , x)−1)

)
,

F (t , x , y , z) = −f
(
t , x , α̂(t , x , zσ(t , x)−1)

−
(
zσ(t , x)−1) · b

(
t , x , α̂(t , x , zσ(t , x)−1)

)
.

Second Approach

B(t , x , y , z) = b(t , x , α̂(t , x , y)),
F (t , x , y , z) = −∂x f (t , x , α̂(t , x , y))− y · ∂x b(t , x , α̂(t , x , y)).



FBSDE DECOUPLING FIELD

To solve the standard FBSDE{
dXt = B(t ,Xt ,Yt )dt +Σ(t ,Xt )dWt

dYt = −F (t ,Xt ,Yt )dt + Zt dWt

with X0 = x0 and Y T = g(XT ),

a standard approach is to look for a solution of the form Yt = u(t ,Xt )

▶ (t , x) ↪→ u(t , x) is called the decoupling field of the FBSDE
▶ If u is smooth,

▶ apply Itô’s formula to du(t ,Xt ) using forward equation
▶ identify the result with dYt in backward equation

(t , x) ↪→ u(t , x) is the solution of a nonlinear PDE

Oh well, So much for the probabilistic approach !



BACK TO THE MFG PROBLEM

▶ Forward Dynamics of state X

dXt = b(t ,Xt , µt , α̂(t ,Xt , µt ,Yt ))dt + σdWt

▶ Backward Dynamics of the adjoint Yt

dYt = −∂x f (t ,Xt , α̂(t ,Xt ,Yt ))− Yt · ∂x b(t ,Xt , α̂(t ,Xt ,Yt ))dt + Zt dWt

▶ In equilibrium µt = PXt

So the FBSDE is of McKean-Vlasov type !

▶ For µ = (µt )t fixed, assume decoupling field uµ : [0,T ]× Rd ↪→ R exists so that

Yt = uµ(t ,Xt )

so in equilibrium
Yt = uPXt (t ,Xt ).

▶ Challenge: Could the function

(t , x , µ) ↪→ U(t , x , µ) = uµ(t ,Xt )

which contains all the information be the solution of an infinite dimensional
PDE, with time evolving in one single direction?

MASTER EQUATION touted by P.L. Lions in his lectures.
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▶ In equilibrium µt = PXt

So the FBSDE is of McKean-Vlasov type !

▶ For µ = (µt )t fixed, assume decoupling field uµ : [0,T ]× Rd ↪→ R exists so that

Yt = uµ(t ,Xt )

so in equilibrium
Yt = uPXt (t ,Xt ).

▶ Challenge: Could the function

(t , x , µ) ↪→ U(t , x , µ) = uµ(t ,Xt )

which contains all the information be the solution of an infinite dimensional
PDE, with time evolving in one single direction?

MASTER EQUATION touted by P.L. Lions in his lectures.
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DIFFERENTIABILITY OF FUNCTIONS OF MEASURES

M(Rd) space of signed (finite) measures on Rd

▶ Banach space (dual of a space of continuous functions)
▶ Classical differential calculus available
▶ If

M(Rd ) ∋ m ↪→ ϕ(m) ∈ R

"ϕ is differentiable" has a meaning
▶ For m0 ∈ M(Rd) one can define

δϕ(m0)

δm
(·)

as a function on Rd in Fréchet or Gâteaux sense

Bensoussan-Frehe-Yam alternative is to work only with measures with densities and
view ϕ as a function on L1(Rd , dx) !



TOPOLOGY ON WASSERSTEIN SPACE

Measures appearing in MFG theory are probability distributions of
random variables !!!

Wasserstein space

P2(Rd ) =

{
µ ∈ P(Rd );

∫
Rd

|x|2dµ(x) < ∞
}

Metric space for the 2-Wasserstein distance

W2(µ, ν) = inf
π∈Π(µ,ν)

[ ∫
Rd ×Rd

|x − y|2π(dx, dy)
]1/2

where Π(µ, ν) is the set of probability measures coupling µ and ν.
Topological properties of Wasserstein space well understood as following statements are
equivalents

▶ µN −→ µ in Wasserstein space

▶ µN −→ µ weakly and
∫
|x|2µN (dx) −→

∫
|x|2µ(dx)



DIFFERENTIAL CALCULUS ON WASSERSTEIN SPACE

What does it mean "ϕ is differentiable" or "ϕ is convex" for

P2(Rd ) ∋ µ ↪→ ϕ(µ) ∈ R

Wasserstein space P2(Rd) is a metric space for W2

▶ Optimal transportation (Monge-Ampere-Kantorovich)
▶ Curve length and shortest paths (geodesics)
▶ Notion of convex function on P2(Rd)

▶ Tangent spaces and differential geometry on P2(Rd).
▶ Differential calculus on Wasserstein space

Brenier, Benamou, Ambrosio, Gigli, Otto, Caffarelli, Villani, Carlier, ....



DIFFERENTIABILITY IN THE SENSE OF P.L.LIONS

If P2(Rd ) ∋ µ ↪→ ϕ(µ) ∈ R is "differentiable" on Wasserstein space what about

RdN ∋ (x1, · · · , xN) 7→ u(x1, · · · , xN) = ϕ

(
1
N

N∑
j=1

δx j

)
?

How does ∂ϕ(µ) relate to ∂x i u(x1, · · · , xN)?

Lions’ Solution
▶ Lift ϕ up to L2(Ω̃, F̃ , P̃) into ϕ̃ defined by ϕ̃(X ) = ϕ(P̃X )

▶ Use Fréchet differentials on flat space L2

Definition of L-differentiability

ϕ is differentiable at µ0 if ϕ̃ is Fréchet differentiable at X0 s.t. P̃X0 = µ0

▶ Check definition is intrinsic



EXAMPLES OF L-DIFFERENTIALS

▶ Examples

ϕ(µ) =

∫
Rd

h(x)µ(dx) =⇒ ∂ϕ(µ)(·) = ∂h(·)

ϕ(µ) =

∫
Rd

∫
Rd

h(x − y)µ(dx)µ(dy) =⇒ ∂ϕ(µ)(·) = [2∂h(·) ∗ µ](·)

ϕ(µ) =

∫
Rd

φ(x, µ)µ(dx) =⇒ ∂ϕ(µ)(·) = ∂xφ(·, µ) +
∫
Rd

∂µφ(x ′
, µ)(·)µ(dx ′)

▶ Connection with flate derivative Assume ϕ : M2(Rd ) 7→ R has a linear functional
derivative (at least in a neighborhood of P2(Rd ) and that Rd ∋ x 7→ [δϕ/δm](m)(x) is
differentiable and the derivative

M2(Rd ) × Rd ∋ (m, x) 7→ ∂x

[ δϕ

δm

]
(m)(x) ∈ Rd

is jointly continuous in (m, x) and is of linear growth in x , then ϕ is L-differentiable and

∂µϕ(µ)( · ) = ∂x
δϕ

δm
(µ)( · ), µ ∈ P2(Rd ).

▶ A sobering counter-example. If µ0 ∈ P2(E) is fixed, the square distance function

P2(E) ∋ µ → W2(µ0, µ)
2 ∈ R

may not be convex or even L-differentiable!



ITÔ’S CHAIN RULE

▶ If u is smooth
▶ If dξt = ηt dt + γt dWt

▶ If dXt = bt dt + σt dWt and µt = PXt

u(t, ξt , µt ) = u(0, ξ0, µ0) +

∫ t

0
∂x u(s, ξs, µs) ·

(
γsdWs

)
+

∫ t

0

(
∂t u(s, ξs, µs) + ∂x u(s, ξs, µs) · ηs +

1
2

trace
[
∂

2
xx u(s, ξs, µs)γsγ

†
s
])

ds

+

∫ t

0
Ẽ
[
∂µu(s, ξs, µs)(X̃s) · b̃s

]
ds +

1
2

∫ t

0
Ẽ
[
trace

(
∂v

[
∂µu(s, ξs, µs)

]
(X̃s)σ̃sσ̃

†
s
)]

ds

where the process (X̃t , b̃t , σ̃t )0≤t≤T is an independent copy of the process (Xt , bt , σt )0≤t≤T , on

a different probability space (Ω̃, F̃, P̃)



EXAMPLE OF AN ACTUAL MASTER EQUATION

∂tU(t , x , µ) + b
(
t , x , µ, α̂(t , x , µ, ∂U(t , x , µ))

)
· ∂xU(t , x , µ)

+
1
2

trace
[
∂2

xxU(t , x , µ)
]
+ f

(
t , x , µ, α̂(t , x , µ, ∂U(t , x , µ))

)
+

∫
Rd

[
b
(
t , x ′, µ, α̂(t , x , µ, ∂U(t , x , µ))

)
· ∂µU(t , x , µ)(x ′)

+
1
2

trace
(
∂x′∂µU(t , x , µ)(x ′)

)]
dµ(x ′) = 0,

for (t , x , µ) ∈ [0,T ]× Rd × P2(Rd ), with the terminal condition V (T , x , µ) = g(x , µ).



SOME RESULTS

▶ Infinite dimensional PDE, rarely solved !
▶ Lions’ solution of several first order models in Cardaliaguet’s notes
▶ The master field is a viscosity solution of the master equation (not too hard)
▶ Desirable results:

▶ existence of classical solutions
▶ convergence of solutions of finite player games to solutions of the MFG

▶ Cardaliaguet-Delarue-Lasry-Lions: major breakthrough (140 pages) despite
very restrictive assumptions

▶ Assuming existence of classical solutions to the master equation
▶ Large deviations & rates of convergence Delarue-Lacker-Ramanan
▶ Analysis of finite MFGs R.C.-Delarue, Bayraktar-Cohen
▶ Erdos-Renyi graphs Delarue



TAKING STOCK

SDE State Dynamics
for N players

Optimization−−−−−−→ Nash Equilibrium
for N playersy Fixed Point

limN→∞

y Fixed Point
limN→∞

McKean Vlasov
Dynamics

Optimization−−−−−−→ Mean Field Game, MFG
Controlled McKean-Vlasov SDE, MFC

The diagram IS NOT commutative



CONTROLLED MCKEAN-VLASOV SDES

inf
α=(αt )0≤t≤T

E
[ ∫ T

0
f
(
t, Xt , PXt , αt

)
dt + g

(
XT , PXT

)]
under dynamical constraint dXt = b

(
t, Xt , PXt , αt

)
dt + σ

(
t, Xt , PXt , αt

)
dWt .

▶ State (Xt , PXt ) infinite dimensional

▶ State trajectory t 7→ (Xt , µt ) is a very thin submanifold due to constraint µt = PXt

▶ Open loop form: α = (αt )0≤t≤T adapted
▶ Closed loop form: αt = ϕ(t, Xt , PXt )

Whether we use
▶ Infinite dimensional HJB equation
▶ Pontryagin stochastic maximum principle with Hamiltonian

H(t, x, µ, y, z, α) = b(t, x, µ, α) · y + σ(t, x, µ, α) · z + f (t, x, µ, α)

and introduce the adjoint equations,

WE NEED TO DIFFERENTIATE FUNCTIONS OF MEASURES !



THE ADJOINT EQUATIONS

Given an admissible control α = (αt )0≤t≤T and the corresponding controlled state
process Xα = (Xα

t )0≤t≤T , any couple (Yt ,Zt )0≤t≤T satisfying:
dYt = −∂x H(t ,Xα

t ,PXα
t
,Yt , αt )dt + Zt dWt

−Ẽ[∂µH(t , X̃t ,PXα
t
, Ỹt , α̃t )(Xα

t )]dt
YT = ∂x g(Xα

T ,PXα
T
) + Ẽ[∂µg(X̃α

T ,PXα
T
)(Xα

T )]

where (α̃, X̃ , Ỹ , Z̃ ) is an independent copy of (α,Xα,Y ,Z ). (Y,Z) is called a set of
adjoint processes

Extra terms in red are the ONLY difference between MFG and Control of
McKean-Vlasov dynamics !!!



PONTRYAGIN MAXIMUM PRINCIPLE (SUFFICIENCY)

Assume
1. Coefficients continuously differentiable with bounded derivatives;

2. Terminal cost function g is convex;

3. α = (αt)0≤t≤T admissible control, X = (Xt)0≤t≤T corresponding
dynamics, (Y,Z) = (Yt ,Zt)0≤t≤T adjoint processes and

(x , µ, α) ↪→ H(t , x , µ,Yt ,Zt , α)

is dt ⊗ dP a.e. convex,

then, if moreover

H(t ,Xt ,PXt ,Yt ,Zt , αt) = inf
α∈A

H(t ,Xt ,PXt ,Yt , α), a.s.

Then α is an optimal control, i.e.

J(α) = inf
β∈A

J(β).



SOLUTION OF THE MCKV CONTROL PROBLEM

Assume
▶ b(t , x , µ, α) = b0(t)

∫
Rd xdµ(x) + b1(t)x + b2(t)α

with b0, b1 and b2 is Rd×d -valued and are bounded.
▶ f and g as in MFG problem.

Then there exists a solution (X,Y,Z) = (Xt ,Yt ,Zt )0≤t≤T of the McKean-Vlasov
FBSDE 

dXt = b0(t)E(Xt )dt + b1(t)Xt dt + b2(t)α̂(t ,Xt ,PXt ,Yt )dt + σdWt ,

dYt = −∂x H
(
t ,Xt ,PXt ,Yt , α̂t

)
dt

− E
[
∂µH̃

(
t , X̃t ,Xt , Ỹt , ˜̂αt

)]
dt + Zt dWt .

with Yt = u(t ,Xt ,PXt ) for a function

u : [0,T ]× Rd × P1(Rd ) ∋ (t , x , µ) 7→ u(t , x , µ)

uniformly of Lip-1 and with linear growth in x .

Existing particular case: Mean Variance Portfolio Optimization (Anderson - Djehiche)



LARGE GAME ASYMPTOTICS WITH COMMON NOISE

If W0 = (W 0
t )t≥0 is an independent Wiener process independent of the idiosyncratic

Wi = (W i
t )t≥0 for i ≥ 1,

dX N,i
t = b(t, X N,i

t , µ
N
XN

t
, α

i
t )dt + σ(t, X N,i

t , µ
N
XN

t
, α

i
t )dW i

t + σ
0(t, X N,i

t , µ
N
XN

t
, α

i
t )dW 0

t

In the limit N → ∞, Conditional Law of Large Numbers
▶ If we consider exchangeable equilibria,(α1

t , · · · , α
N
t ), then

▶ By LLN
lim

N→∞
µN

t = PX1
t |F

0
t

▶ Dynamics of player 1 (or any other player) becomes

dX 1
t = b(t ,X 1

t , µt , α
1
t )dt + σ(t ,X 1

t )dWt+σ0(t ,Xt , µt , α
1
t )dW 0

t

with µt = PX1
t |F

0
t
.

▶ Cost to player 1 (or any other player) becomes

E

{∫ T

0
f (t ,Xt , µt , α

1
t )dt + g(XT , µT )

}



MFG PROBLEM WITH COMMON NOISE

As usual assume σ and σ0 do not depend upon µ and α.

1. Fix a measure valued (F0
t )-adapted process (µt ) in P(R);

2. Solve the standard stochastic control problem

α̂ = arg inf
α

E
{∫ T

0
f (t, Xt , µt , αt )dt + g(XT , µT )

}
subject to

dXt = b(t ,Xt , µt , αt )dt + σ(t ,Xt )dWt + σ0(t ,Xt ) ◦ dW 0
t ;

3. Fixed Point Problem: determine (µt ) so that

∀t ∈ [0, T ], PXt |F
0
t
= µt a.s.

Once this is done, if α̂t = ϕ(t ,Xt ), go back to N player game and show that:

α
j∗
t = ϕ∗(t ,X j

t ), j = 1, · · · ,N

form an approximate Nash equilibrium for the game with N players.

Among the many complications

the master equation is now second order in the measure argument!



EXCITING CHALLENGES BEING ACTIVELY PURSUED

▶ Moral Hazard & Contract Theory
▶ one principal (regulator) offering a contract to incentivize behavior
▶ many agents compete and optimize their objectives

▶ Games of timing (bank runs)
▶ Network Games on large (N → ∞) random graphs

▶ sparse graphs → special behaviors (Delarue, Lacker-Soret, Fouque et al)
▶ dense graphs → graphon models (Ozdaglar-Parise, R.C. et al, Caines

et al, Bayraktar et al)

▶ Mean Field Reinforcement Learning (RL)
▶ RL plays crucial role in games (chess,go), robotics, AI (ChatGPT,

DeepSeek)
▶ IMSI workshop during RL Special Long Program (Spring 2026)
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