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MODELS OF COMPETITION: NASH EQUILIBRIA

▶ Say player i takes action αi ,
▶ Their cost J i depends upon the actions α1, · · · , αN of ALL the players

J i = J i (α1, · · · , αN)

▶ A strategy profile (α̂1, · · · , α̂N) is a Nash equilibrium if
for every i and feasible action αi

J i (α̂1, · · · , α̂i−1, α̂i , α̂i+1, · · · , α̂N) ≤ J i (α̂1, · · · , α̂i−1, αi , α̂i+1, · · · , α̂N)

whatever i = 1, · · · ,N is !
▶ In other words,

the system is in a Nash equilibrium if any player trying to deviate from their action
cannot end up better off !

▶ Not traditional minimization (not the typical steady state found in physics)
▶ Lack of Uniqueness: when they do exist, they are often in large numbers,

often a continuum
▶ Why should a system settle in a Nash equilibrium? Which one?

▶ These equilibria capture a notion of stability



MODEL OF COOPERATION

Nash Equilibria vs Social Optimality

If agents take actions α1, · · · , αN , Social Cost is defined as:

JSC(α1
, · · · , αN ) =

1
N

[
J1(α1

, · · · , αN ) + · · · + JN (α1
, · · · , αN )

]
▶ If (α̂1, · · · , α̂N ) is a Nash Equilibrium (NE)

JSC(α̂1
, · · · , α̂N )

is the (average) cost to the population for settling in the Nash Equilibrium

▶ A Central Planner could minimize the social cost and find

(α1∗
, · · · , αN∗) = arg inf

(α1,··· ,αN )
JSC(α1

, · · · , αN )

JSC(α1∗, · · · , αN∗) is the minimal social cost ! Unfortunately, it is rarely a Nash equilibrium
▶ How bad / suboptimal can Nash equilibria be?

PoS =
inf

(α̂1,··· ,α̂N ) NE JSC(α̂1, · · · , α̂N )

JSC(α1∗, · · · , αN∗)

quantifying how much worse the best Nash
equilibrium is

Price of Stability

PoA =
sup

(α̂1,··· ,α̂N ) NE JSC(α̂1, · · · , α̂N )

JSC(α1∗, · · · , αN∗)

quantifying how much worse the worst Nash
equilibrium is

Price of Anarchy
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PARADOXES AND PRICE OF ANARCHY

▶ Game Theory is replete with paradoxes !
▶ e.g. Braess’s paradox in selfish routing (static one-period deterministic

game)
▶ How bad can a Nash Equilibrium (NE) be when compared to alternative

solutions?
▶ Introduction of terminology Price of Anarchy (PoA) by

Koutsoupias-Papadimitriou
▶ Explicit PoA Bounds for Selfish Routing Games (T. Roughgarden - E.

Tardos

Goal of this part of the lecture:

compare Social Welfare for NE to what a Central Planer could achieve



POA BOUNDS FOR CONTINUOUS TIME GAMES

References:
▶ PoA for Deterministic Linear Quadratic N-player Games (Basar - Zhu) (2010)
▶ Related ideas in M. Huang’s presentation in Rome
▶ Efficiency in MFGs (Balandat - Tomlin (2013), Cardaliaguet - Rainer (2018))

Explicit computations for LQ MFGs R.C. - Graves - Tan (2017))

Compute smallest possible Social Cost per individual:
▶ Have a Central Planner find a common feedback control
▶ to minimize the Expected Cost per individual to the system

MFG Model
▶ Let the individuals take care of their optimizations
▶ Hope for a Nash Equilibrium
▶ Compute the Expected Cost (per individual) to the system

How much worse is the cost due to the NE?



COERCING PLAYERS INTO CHANGE THEIR BEHAVIORS

R.C. - Delarue

R.C. - Dayanikli - Delarue - Lauriere

The Model The basic state controlled equation is:

dXt = αt dt + σdWt

and for each fixed flow of probability measures µ = (µt )0≤t≤T we define the cost:

Jµ(α) = E
[∫ T

0
f (t,Xt , µt , αt )dt + g(XT , µT )

]
Assume that the running cost function f is of the form:

f (t, x, µ, α) =
1
2
|α|2 + f0(x, µ).

Hamiltonian

H(t, x, µ, y, α) = α · y +
1
2
|α|2 + f0(x, µ)

Minimizer
α̂(t, x, µ, y) = arg min H(t, x, µ, y, α) = −y



ASSUMPTION FOR INITIAL MODEL

(I) f0 and g are continuously differentiable with respect to x , and differentiable with respect to
µ (in the sense of ∂µ).

(II) For any (x, µ) ∈ Rd × P2(Rd ), there exists a version of

v 7→ ∂µf0(x, µ)(v) resp. v 7→ ∂µg(x, µ)(v)

such that the mapping

(x, µ, v) 7→ ∂µf0(x, µ)(v) resp. (x, µ, v) 7→ ∂µg(x, µ)(v)

is continuous.

(III) ∂x f0 are ∂x g are Lipschitz continuous

(IV) ∂µf0 and ∂µg are Lipschitz continuous in the following sense.

E
[∣∣∣∂µf0(x

′
, µ

′)(X ′) − ∂µf0(x, µ)(X)
∣∣∣2]

≤ L
[
|x′ − x|2 + E

[
|X ′ − X |2

]]
E
[∣∣∣∂µg(x′

, µ
′)(X ′) − ∂µg(x, µ)(X)

∣∣∣2]
≤ L

[
|x′ − x|2 + E

[
|X ′ − X |2

]]
for all x, x ′ ∈ Rd , α, α′ ∈ Rd , µ, µ′ ∈ P2(Rd ), and any Rd -valued random variables X and
X ′ having µ and µ′ as distributions.

(V) The functions f0 and g are convex in (x, µ), convexity with respect to the measure argument
being understood in the displacement convexity sense,



THE MEAN FIELD GAME (MFG) SYSTEM

In equilibrium, the state process X = (Xt )0≤t≤T and the adjoint process Y = (Yt )0≤t≤T solve the
following FBSDE of the McKean-Vlasov type:

dXt = −Yt dt + σdWt

dYt = −∂x f0(Xt ,L(Xt ))dt + Zt dWt ,

YT = ∂x g(XT ,L(XT )),

The equilibrium strategy is given by

αt = −Yt , 0 ≤ t ≤ T .

The equilibrium cost to an individual is

JMFG(α) = E
[∫ T

0
f (t,Xt , µt , αt )dt + g(XT , µT )

]
with µt = L(Xt ) for each t ≥ 0.



THE CENTRAL PLANNER PROBLEM

Minimize the McKean-Vlasov cost defined for each strategy α = (αt )0≤t≤T as:

JMFC(α) = E
[∫ T

0
f (t,Xt ,L(Xt ), αt )dt + g(XT , µT )

]
where X satisfies dXt = αt dt + σdWt .

Social cost (per individual) defined as:

JMFC = inf
α

JMFC(α)

Notice that:
JMFC ≤ JMFG(α)

for all MFG equilibria α = (αt )0≤t≤T .

Convenient notation for the central planner optimization problem:

α
MFC = arg inf

α
JMFC(α)

Accordingly:

µ
MFC = (µMFC

t )0≤t≤T with µ
MFC
t = L(X MFC

t ) and dX MFC
t = α

MFC
t dt + σdWt



THE CENTRAL PLANNER PROBLEM (CONT.)

Because the (reduced) Hamiltonian is given by:

H(t , x , µ, y , α) = αy +
1
2
|α|2 + f0(x , µ)

the solution is now given by the FBSDE


dXt = −Yt dt + σdWt

dYt = −
(
∂x f0(Xt ,L(Xt ))dt+Ẽ[∂µf0(X̃t ,L(Xt ))(Xt )]

)
dt + Zt dWt ,

YT = ∂x g(XT ,L(XT )) + Ẽ[∂µg(X̃T ,L(XT ))(XT )],

which is different from FBSDE giving the solution of the MFG problem !!!!!



COERCING PLAYERS TO CHANGE THEIR BEHAVIORS

Question: Can we incentivize the individuals in a MFG by perturbing the running cost they incur in
such a way that they end up behaving (in terms of their strategy and actual state) exactly as if they
were adopting the optimal strategy identified by a central planner optimizing the original social cost?

For λ ∈ [0, 1] define

fλ(x, µ) = f0(x, µ) + λẼ[
δf0
δm

(X̃ , µ)(x)]

and consider the MFG with the same controlled state dynamics, running cost function:

1
2
|α|2 + fλ(x, µ)

and terminal cost

gλ(x, µ) = g(x, µ) + λẼ[
δg
δm

(X̃ , µ)(x)]

so that the equilibrium state dynamics are given by the forward component of the solution of the
FBSDE: 

dXt = −Yt dt + σdWt

dYt = −∂x fλ(Xt ,L(Xt ))dt + Zt dWt ,

YT = ∂x gλ(XT ,L(XT )),

Since the L-derivative and the functional derivatives are related by

∂x
δf
δm

(µ)(x) = ∂µf (µ)(x)

the solution of this MFG coincides for λ = 1 with the solution central planner MFC
optimization problem



λ-INTERPOLATED MFG

For a generic flow µ := (µt )0≤t≤T from [0, T ] to P2(Rd ), the cost Jλ,MF(α;µ):

Jλ,MF(
α;µ

)
:=(1 − λ)J

(
α;µ

)
+ λJMFC(

α
)

=E
[

1
2

∫ T

0
|αt |2dt +

∫ T

0

[
(1 − λ)f0

(
Xα

t , µt
)
+ λf0

(
Xα

t ,L(Xα
t )

)]
dt
]

+ E
[
(1 − λ)g

(
Xα

T , µT
)
+ λg

(
Xα

T ,L(Xα
T )

)]
.

(1)

DEFINITION
For a given λ ∈ [0, 1], we say that a (square-integrable) control process αλ induces a
λ-interpolated mean field equilibrium if αλ solves the minimization problem

inf
α

Jλ,MF(
α;µλ)

,

where µλ := (µλ
t )0≤t≤T = L(Xλ

t ), for t ∈ [0, T ] where Xλ is the state process solving (??)
controlled by αλ.



PROPERTIES OF λ-INTERPOLATED EQUILIBRIUMS

1. if f0 and g satisfy the Lasry-Lions monotonicity condition

∀m,m′ ∈ P(Rd ),

∫
Rd

(
f0(x,m

′) − f0(x,m)
)

d
(
m′ − m

)
(x) ≥ 0,

and similarly for g, then

0 ≤ λ < λ
′ ≤ 1 =⇒ Jλ′,MF(

α
λ′

;µλ′)
≤ Jλ,MF(

α
λ;µλ)

.

2. f0 and g are given as

f0(x, µ) =
∫
Rd
φ0(x − y)dµ(y), g(x, µ) =

∫
Rd
ψ(x − y)dµ(y),

for even convex functions φ0 and ψ with Lipschitz continuous derivatives, then for any
λ ∈ [0, 1], there exists a unique λ-interpolated mean field equilibrium control αλ and the
mapping

[0, 1] ∋ λ 7→ (Xλ
t )0≤t≤T

is continuous for the norm ∥X∥S2 := sup0≤t≤T E[|Xt |2]1/2.



INCENTIVIZING THE OPTIMAL SOCIAL COST PER INDIVIDUAL

Question: Can we incentivize the players (still by perturbation of their cost functions) into a
behavior which leads to the same equilibrium costs as those obtained under the rule of the central
planner?

Master equation for the value function of the central planner optimization problem:

∂t V (t, x, µ) +
σ2

2
∆V (t, x, µ) −

1
2
|∂x V (t, x, µ)|2

+
1
2

∫
Rd

∫
Rd
∂µV (t, x′

, µ)(x)∂µV (t, x ′′
, µ)(x)dµ(x ′)dµ(x′′) + f0(x, µ)

+

∫
Rd

[(
−∂x V (t, x̃, µ) −

∫
Rd
∂µV (t, x′

, µ)(x̃)dµ(x ′)

)
· ∂µV (t, x, µ)(x̃)

+
σ2

2
trace

(
∂v∂µV (t, x, µ)(x̃)

)]
dµ(x̃) = 0,

with terminal condition V (T , x, µ) = g(x, µ).



INCENTIVIZING THE OPTIMAL SOCIAL COST PER INDIVIDUAL (CONT.)

Master equation for a MFG with same controlled state equation and running cost function

f̃ (t, x, µ, α) =
1
2
|α|2 + f̃0(x, µ)

given by:

∂t U(t, x, µ) +
σ2

2
∆U(t, x, µ) −

1
2
|∂x U(t, x, µ))|2

−
∫
Rd
∂x U(t, v , µ) · ∂µU(t, x, µ)(v)dµ(v)

+
σ2

2

∫
Rd

trace
[
∂v∂µU(t, x, µ)(v)

]
dµ(v) + f̃0(x, µ) = 0,

with terminal condition U(T , x, µ) = g(x, µ).

So choosing:

f̃0(x, µ) = f0(x, µ) +
1
2

∫
Rd

∫
Rd
∂µV (t, x ′

, µ)(x) · ∂µV (t, x ′′
, µ)(x)dµ(x′)dµ(x ′′)

−
∫
Rd

∫
Rd
∂µV (t, x ′

, µ)(x̃) · ∂µV (t, x, µ)(x̃)dµ(x′)dµ(x̃)

does the trick since the master equations are the same.



PRICE OF INSTABILITY FOR A SOCIAL EQUILIBRIUM

Recall: the social cost of any MFG (Nash) equilibrium is higher than the
social cost (per individual) incurred when the individuals all agree to use the
(common) strategy identified by a central planner

I argue: while less costly, the central planner solution is less stable

Reasonable question: By how much can an individual player’s average cost
be lowered by deviating unilaterally from the MFC optimal control αMKV

identified by the social planner?



SINGLE PLAYER DEVIATION

Following the control identified by the social planner, an individual agent’s cost is

J∗ := JMKV(αMKV) = E
[∫ T

0

( 1
2
|αMKV

t |2 + f0(X
MKV
t , µ

MKV
t )

)
dt + g(X MKV

T , µ
MKV
T )

]
.

If allowed to deviate from this control, still evolving in the same environment, the smallest cost
for the agent should be

Ĵ0 := JµMKV
(α̂) = E

[∫ T

0

( 1
2
|α̂t |2 + f0(X̂t , µ

MKV
t )

)
dt + g(X̂T , µ

MKV
T )

]
where dX̂t = α̂t dt + σdWt and

α̂ = arg min
α

E
[∫ T

0

( 1
2
|αt |2 + f0(X

α
t , µ

MKV
t )

)
dt + g(Xα

T , µ
MKV
T )

]
s.t. dXα

t = αt dt + σdWt .

(2)

Notice this is a classical control problem!

PoI ≥ 0 by construction
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Ĵ0 := JµMKV
(α̂) = E

[∫ T

0

( 1
2
|α̂t |2 + f0(X̂t , µ

MKV
t )

)
dt + g(X̂T , µ

MKV
T )

]
where dX̂t = α̂t dt + σdWt and

α̂ = arg min
α

E
[∫ T

0

( 1
2
|αt |2 + f0(X

α
t , µ

MKV
t )

)
dt + g(Xα

T , µ
MKV
T )

]
s.t. dXα

t = αt dt + σdWt .

(2)

Notice this is a classical control problem!

PoI ≥ 0 by construction



SINGLE PLAYER DEVIATION

Following the control identified by the social planner, an individual agent’s cost is

J∗ := JMKV(αMKV) = E
[∫ T

0

( 1
2
|αMKV

t |2 + f0(X
MKV
t , µ

MKV
t )

)
dt + g(X MKV

T , µ
MKV
T )

]
.

If allowed to deviate from this control, still evolving in the same environment, the smallest cost
for the agent should be
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POI OF A SOCIAL OPTIMUM

DEFINITION
The Price of Instability (PoI) is defined as the quantity:

PoI = J∗ − Ĵ0 (3)

where
▶ J∗ is the cost of the mean field control problem

▶ Ĵ0, is the cost of the optimal control in the classical control problem in the social planner
environment

▶ Does not involve possible Nash equilibriums of the system.
▶ If PoI = 0, αMKV is an MFG equilibrium control. In this case, PoS = 1,
▶ Furthermore, if the MFG equilibrium is unique, then we also have PoA = 1.
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▶ Ĵ0, is the cost of the optimal control in the classical control problem in the social planner
environment

▶ Does not involve possible Nash equilibriums of the system.

▶ If PoI = 0, αMKV is an MFG equilibrium control. In this case, PoS = 1,
▶ Furthermore, if the MFG equilibrium is unique, then we also have PoA = 1.



POI OF A SOCIAL OPTIMUM

DEFINITION
The Price of Instability (PoI) is defined as the quantity:

PoI = J∗ − Ĵ0 (3)
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SOME PROPERTIES OF POI

Assume αMKV is given by a bounded feedback function that is Lipschitz continuous in x .

1. If PoI = 0, then it must hold,∫
Rd
∂µf0

(
x, µMKV

t
)
(y)dµMKV

t (x) = 0, y ∈ Rd
, t ∈ [0, T ]

and ∫
Rd
∂µg

(
x, µMKV

T
)
(y)dµMKV

T (x) = 0, y ∈ Rd
.

2. If f0 and g are twice continuously differentiable, then

PoI ≥
1

4C
E
∫ T

0
|Yt |2dt,

where C is a constant which depends only on the model’s coefficients and

Yt = E
{
Ẽ
[
∂µg

(
X̃ MKV

T , µ
MKV
T

)(
X MKV

T
)
+

∫ T

t
∂µf0

(
X̃ MKV

s , µ
MKV
s

)(
X MKV

s
)
ds

] ∣∣∣Ft

}
.



NUMERICS FOR LQ MODELS
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Price of Instability when s varies from s = 0.0 to s = 2.0 and q varies from 0.0 to 8.0 (left) and
when sT varies from sT = 0.0 to sT = 2.0 and q̄T varies from 0.0 to 8.0. (right) all the other
parameters are fixed to s = 1.0, q = 1.0, q̄ = 1.0, qT = 1.0.
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