Control of Conditional Processes

René Carmona

Department of Operations Research & Financial Engineering PACM Princeton University

Van Eenam Lecture II, University of Michigan

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Credit

R.C. with Mathieu Laurière and Pierre Louis Lions Illinois Journal of Mathematics 68 (3), 2024, 577-637

 R.C. with Dan Lacker Stochastic Analysis and Applications 2014: In Honour of Terry Lyons (2024) Springer Verlag

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 R.C. with Samuel Daudin (in preparation)

- Two lectures by P.L. Lions at Collège de France in November 2016
- Not much after that except for a numeric paper by Achdou, Laurière & Lions

<□ > < @ > < E > < E > E のQ @

- Two lectures by P.L. Lions at Collège de France in November 2016
- Not much after that except for a numeric paper by Achdou, Laurière & Lions

(日) (日) (日) (日) (日) (日) (日)

Original model:

- $dX_t = \alpha_t dt + dW_t \text{ in } \mathbb{R}^d;$
- (α_t)_{0≤t≤T} adapted *control* process;
- *D* bounded open domain in \mathbb{R}^d , with smooth boundary ∂D ;
- $\tau = \inf\{t > 0; X_t \notin D\}$ first exit time;
- Running cost function $f(x, \alpha) = \frac{1}{2} |\alpha|^2 + \tilde{f}(x)$
- Terminal cost function g bounded measurable

- Two lectures by P.L. Lions at Collège de France in November 2016
- Not much after that except for a numeric paper by Achdou, Laurière & Lions

Original model:

- $dX_t = \alpha_t dt + dW_t \text{ in } \mathbb{R}^d;$
- (α_t)_{0≤t≤T} adapted *control* process;
- *D* bounded open domain in \mathbb{R}^d , with smooth boundary ∂D ;
- $\tau = \inf\{t > 0; X_t \notin D\}$ first exit time;
- Running cost function $f(x, \alpha) = \frac{1}{2} |\alpha|^2 + \tilde{f}(x)$
- Terminal cost function g bounded measurable

Challenge: minimize over open loop and/or Markovian control processes

$$J^{\tau}(\boldsymbol{\alpha}) = \int_{0}^{T} \mathbb{E}[f(X_{t}, \alpha_{t})|\tau \geq t] dt + \mathbb{E}[g(X_{T})|\tau \geq T]$$
$$= \int_{0}^{T} \frac{\mathbb{E}\Big[f(X_{t}, \alpha_{t})\mathbf{1}_{\tau \geq t}\Big]}{\mathbb{P}[\tau \geq t]} dt + \frac{\mathbb{E}\Big[g(X_{T})\mathbf{1}_{\tau \geq T}\Big]}{\mathbb{P}[\tau \geq T]}.$$

Not a standard optimal control problem !

- Two lectures by P.L. Lions at Collège de France in November 2016
- Not much after that except for a numeric paper by Achdou, Laurière & Lions

Original model:

- $dX_t = \alpha_t dt + dW_t \text{ in } \mathbb{R}^d;$
- (α_t)_{0≤t≤T} adapted *control* process;
- *D* bounded open domain in \mathbb{R}^d , with smooth boundary ∂D ;
- $\tau = \inf\{t > 0; X_t \notin D\}$ first exit time;
- Running cost function $f(x, \alpha) = \frac{1}{2} |\alpha|^2 + \tilde{f}(x)$
- Terminal cost function g bounded measurable

Challenge: minimize over open loop and/or Markovian control processes

$$J^{\tau}(\boldsymbol{\alpha}) = \int_{0}^{T} \mathbb{E}[f(X_{t}, \alpha_{t})|\tau \geq t] dt + \mathbb{E}[g(X_{T})|\tau \geq T]$$
$$= \int_{0}^{T} \frac{\mathbb{E}\Big[f(X_{t}, \alpha_{t})\mathbf{1}_{\tau \geq t}\Big]}{\mathbb{P}[\tau \geq t]} dt + \frac{\mathbb{E}\Big[g(X_{T})\mathbf{1}_{\tau \geq T}\Big]}{\mathbb{P}[\tau \geq T]}.$$

Not a standard optimal control problem !

Altruistic individuals foraging for food independently of each other in a territory *D*, and **sharing** among the **surviving** individuals in an **egalitarian manner**.

Altruistic individuals foraging for food independently of each other in a territory *D*, and sharing among the surviving individuals in an egalitarian manner.

Individuals die when they leave the territory.

Altruistic individuals foraging for food independently of each other in a territory *D*, and sharing among the surviving individuals in an egalitarian manner.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Individuals die when they leave the territory.
- For $i = 1, \dots, N_t, X_t^i$ are the positions at time *t* of the N_t individuals still alive

Altruistic individuals foraging for food independently of each other in a territory *D*, and sharing among the surviving individuals in an egalitarian manner.

- Individuals die when they leave the territory.
- For $i = 1, \dots, N_t, X_t^i$ are the positions at time *t* of the N_t individuals still alive
- Resources accumulated in the amount f(Xⁱ_t)

Altruistic individuals foraging for food independently of each other in a territory *D*, and sharing among the surviving individuals in an egalitarian manner.

- Individuals die when they leave the territory.
- For $i = 1, \dots, N_t, X_t^i$ are the positions at time *t* of the N_t individuals still alive
- Resources accumulated in the amount f(Xⁱ_t)
- All the resources are aggregated, and redistributed in equal amounts to the survivors

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Altruistic individuals foraging for food independently of each other in a territory *D*, and sharing among the surviving individuals in an egalitarian manner.

- Individuals die when they leave the territory.
- For $i = 1, \dots, N_t, X_t^i$ are the positions at time t of the N_t individuals still alive
- Resources accumulated in the amount f(Xⁱ_t)
- All the resources are aggregated, and redistributed in equal amounts to the survivors

▶ Resource allocated to each individual will be: $\frac{1}{N_t} \sum_{i=1}^{N_t} f(X_t^i)$.

Altruistic individuals foraging for food independently of each other in a territory *D*, and sharing among the surviving individuals in an egalitarian manner.

- Individuals die when they leave the territory.
- For $i = 1, \dots, N_t, X_t^i$ are the positions at time t of the N_t individuals still alive
- Resources accumulated in the amount f(Xⁱ_t)
- All the resources are aggregated, and redistributed in equal amounts to the survivors

- Resource allocated to each individual will be: $\frac{1}{N_t} \sum_{i=1}^{N_t} f(X_t^i)$.
- ▶ $N_t/N \rightarrow \mathbb{P}[\tau > t]$ probability that a typical individual is still alive at time *t*,

Altruistic individuals foraging for food independently of each other in a territory *D*, and sharing among the surviving individuals in an egalitarian manner.

- Individuals die when they leave the territory.
- For $i = 1, \dots, N_t, X_t^i$ are the positions at time t of the N_t individuals still alive
- Resources accumulated in the amount f(Xⁱ_t)
- All the resources are aggregated, and redistributed in equal amounts to the survivors

(日) (日) (日) (日) (日) (日) (日)

- Resource allocated to each individual will be: $\frac{1}{N_t} \sum_{i=1}^{N_t} f(X_t^i)$.
- ▶ $N_t/N \rightarrow \mathbb{P}[\tau > t]$ probability that a typical individual is still alive at time *t*,

Altruistic individuals foraging for food independently of each other in a territory *D*, and sharing among the surviving individuals in an egalitarian manner.

- Individuals die when they leave the territory.
- For $i = 1, \dots, N_t, X_t^i$ are the positions at time t of the N_t individuals still alive
- Resources accumulated in the amount f(Xⁱ_t)
- All the resources are aggregated, and redistributed in equal amounts to the survivors
- ▶ Resource allocated to each individual will be: $\frac{1}{N_t} \sum_{i=1}^{N_t} f(X_t^i)$.
- ▶ $N_t/N \rightarrow \mathbb{P}[\tau > t]$ probability that a typical individual is still alive at time *t*,

Optimization of the fitness of the individuals still alive naturally leads to the conditional control problem which we propose to study.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

III. J. Math Approach: Feynman-Kac Relaxation

Soft killing instead of hard killing

$$J^{V}(\boldsymbol{\alpha}) = \int_{0}^{T} \frac{\mathbb{E}\left[f(X_{t}, \alpha_{t})e^{-\int_{0}^{t} V(X_{s})ds}\right]}{\mathbb{E}\left[e^{-\int_{0}^{t} V(X_{s})ds}\right]} dt + \frac{\mathbb{E}\left[g(X_{T})e^{-\int_{0}^{T} V(X_{s})ds}\right]}{\mathbb{E}\left[e^{-\int_{0}^{T} V(X_{s})ds}\right]}.$$
 (1)

Original problem corresponds to $V = V^{\infty}$ given by:

$$V^{\infty}(x) = \begin{cases} 0 & \text{if } x \in D\\ \infty & \text{otherwise,} \end{cases}$$
(2)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

in which case:

$$\int_{0}^{t} V^{\infty}(X_{s}) ds = \begin{cases} 0 & \text{if } X_{s} \in \overline{D}, \ 0 \le s \le t \\ \infty & \text{if } X_{s} \notin \overline{D} \text{ for some } 0 \le s \le t, \end{cases}$$
(3)

so that:

$$e^{-\int_0^t V^{\infty}(X_{\mathcal{S}})ds} = \mathbf{1}_{[X_{\mathcal{S}}\in\overline{D}, \ 0\leq s\leq t]} = \mathbf{1}_{[\tau_D\geq t]},$$

where τ_D is the first exit time of the domain *D* defined as:

$$\tau_D = \inf\{t \ge 0; X_t \notin \overline{D}\}.$$

Accordingly:

$$J^{V^{\infty}}(\boldsymbol{\alpha}) = \int_{0}^{T} \mathbb{E}\Big[f(X_{t}, \alpha_{t}) | \tau_{D} \geq t\Big] dt + \mathbb{E}\Big[g(X_{T}) | \tau_{D} \geq T\Big],$$
(4)

Approximation Procedure

Approximate V^{∞} by $V^n = nV^1$ where

$$\bigvee V^1(x) = \chi^{\epsilon}(d(x, D))$$

▶ d(x, D) denotes the distance from $x \in \mathbb{R}^d$ to the domain D,

 $\epsilon > 0$ is an arbitrary

$$\chi^{\epsilon}(d) = \begin{cases} 0 & \text{if } d \le 0\\ \text{linear} & \text{if } 0 \le d \le \epsilon\\ 1 & \text{if } d \ge \epsilon. \end{cases}$$
(5)

Approximation Result

If $\mathbf{X} = (X_t)_{t \ge 0}$ satisfies $X_t = x_0 + \int_0^t \alpha_s ds + W_t$ for some fixed α and $x_0 \in D$, then

 \diamond for any bounded function g

$$\mathbb{E}[g(X_T) \mid \tau_D > T] = \lim_{n \to \infty} \frac{\mathbb{E}[g(X_T)e^{-n\int_0^T V^1(X_S)ds}]}{\mathbb{E}[e^{-n\int_0^T V^1(X_S)ds}]}.$$
(6)

♦ Similarly, if $\int_0^T \mathbb{E}[|f(X_t, \alpha_t)|] dt < \infty$, we also have:

$$\int_{0}^{T} \mathbb{E}[f(X_{t}, \alpha_{t}) \mid \tau_{D} > t] dt = \lim_{n \to \infty} \int_{0}^{T} \frac{\mathbb{E}[f(X_{t}, \alpha_{t})e^{-n\int_{0}^{t} V^{1}(X_{s})ds}]}{\mathbb{E}[e^{-n\int_{0}^{t} V^{1}(X_{s})ds}]}.$$
(7)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Assumptions

The running and terminal cost functions satisfy:

• The action space A is a closed convex subset of \mathbb{R}^d ;

- The function g is continuous and bounded on \mathbb{R}^d ;
- For each $\alpha \in A$, the function $f(\cdot, \alpha)$ is continuous and bounded on \mathbb{R}^d .
- For each $x \in \mathbb{R}^d$, the function $f(x, \cdot)$ is convex on A.

Separable case:

$$f(x,\alpha) = \frac{1}{2}|\alpha|^2 + \tilde{f}(x)$$

(ロ) (同) (三) (三) (三) (○) (○)

for some measurable bounded \tilde{f}

- As for the relaxation potential
 - The function V is continuous on \mathbb{R}^d and $0 \le V \le 1$.

First Deterministic Control Problem over a Space of Probabilities

Given $\alpha_t = \phi_t(X_t)$

$$dX_t = \phi_t(X_t)dt + dW_t$$

Corresponding cost $J^V(oldsymbollpha) = J^{(1)}(\phi)$

$$J^{(1)}(\phi) = \int_0^T \int f(x, \phi_t(x)) \mu_t(dx) \ dt + \int g(x) \mu_T(dx), \tag{8}$$

where we use the notation μ_t for the probability measure:

$$\mu_t(d\mathbf{y}) = \frac{\mathbb{E}[\delta_{X_t}(d\mathbf{y})e^{-A_t}]}{\mathbb{E}[e^{-A_t}]}, \qquad 0 \le t \le T,$$
(9)

where $A_t = \int_0^t V(X_s) ds$.

First Deterministic Control Problem over a Space of Probabilities

Given $\alpha_t = \phi_t(X_t)$

$$dX_t = \phi_t(X_t)dt + dW_t$$

Corresponding cost $J^V(\alpha) = J^{(1)}(\phi)$

$$J^{(1)}(\phi) = \int_0^T \int f(x, \phi_t(x)) \mu_t(dx) \ dt + \int g(x) \mu_T(dx), \tag{8}$$

where we use the notation μ_t for the probability measure:

$$\mu_t(dy) = \frac{\mathbb{E}[\delta_{X_t}(dy)e^{-A_t}]}{\mathbb{E}[e^{-A_t}]}, \qquad 0 \le t \le T,$$
(9)

where $A_t = \int_0^t V(X_s) ds$.

FPK Equation

The measure valued function $t \mapsto \mu_t$ satisfies the forward FPK equation:

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t - \operatorname{div}(\phi_t \mu_t) - (V - \langle \mu_t, V \rangle) \mu_t,$$

in the sense of Schwartz distributions with $\mu_0 = \mu_0(dx)$ and

$$<\mu, V>=\int_{\mathbb{R}^d} V(x)\mu(dx).$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

A Non-Local Superposition Principle

Known for Solutions of Standard FPK equations

Let us start with a couple (ϕ, μ) such that

- $\phi = (\phi_t(x))_{0 \le t \le T, x \in \mathbb{R}^d}$ is a \mathbb{R}^d -valued measurable function on $[0, T] \times \mathbb{R}^d$
- $\mu = (\mu_t)_{0 \le t \le T}$ is a measurable flow of probability measures satisfying

•
$$\int_0^T \int_{\mathbb{R}^d} |\phi_t(x)|^2 \mu_t(dx) dt < \infty$$

the non-local FPK equation

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t - \operatorname{div}(\phi_t \mu_t) - (V - \langle \mu_t, V \rangle) \mu_t,$$

(ロ) (同) (三) (三) (三) (○) (○)

A Non-Local Superposition Principle

Known for Solutions of Standard FPK equations

Let us start with a couple (ϕ, μ) such that

- $\phi = (\phi_t(x))_{0 \le t \le T, x \in \mathbb{R}^d}$ is a \mathbb{R}^d -valued measurable function on $[0, T] \times \mathbb{R}^d$
- $\mu = (\mu_t)_{0 \le t \le T}$ is a measurable flow of probability measures satisfying

•
$$\int_0^T \int_{\mathbb{R}^d} |\phi_t(x)|^2 \mu_t(dx) dt < \infty$$

the non-local FPK equation

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t - \operatorname{div}(\phi_t \mu_t) - (V - \langle \mu_t, V \rangle) \mu_t,$$

Then there exists a weak solution $\mathbf{X} = (X_t)_{0 \le t \le T}$ of the stochastic differential equation

$$dX_t = \phi_t(X_t)dt + dW_t$$

with $X_0 \sim \mu_0$ and such that

$$\mu_t(dy) = \frac{\mathbb{E}[\delta_{X_t}(dy)e^{-A_t}]}{\mathbb{E}[e^{-A_t}]}, \qquad 0 \le t \le T,$$

with $A_t = \int_0^t V(X_s) ds$. Moreover $\sup_{0 \le t \le T} \mathbb{E}[|X_t|^2] < \infty$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Existence of an Optimal Control

Ideas from Optimal Transport

Notation: $\mathbb{A}^{(2)}(\mu_0)$ set of couples $(\theta, \mu), \theta = (\theta_t)_{0 \le t \le T}, \mu = (\mu_t)_{0 \le t \le T}$, for which θ_t is absolutely continuous with respect to μ_t and there exists a measurable function $[0, T] \times \mathbb{R}^d \ni (t, x) \mapsto \phi_t(x) \in \mathbb{R}^d$ such that

$$\frac{d\theta_t}{d\mu_t}(x) = \phi_t(x) \quad \text{and} \quad \int_0^T \int_{\mathbb{R}^d} \phi_t(x)^2 \mu_t(dx) dt < \infty.$$

If $(\theta, \mu) \in \mathbb{A}^{(2)}(\mu_0)$, the **superposition principle** implies that there exists a process $\mathbf{X} = (X_t)_{0 \le t \le T}$ satisfying $dX_t = \phi_t(X_t)dt + dW_t$, and such that the probability measures μ_t are given by

$$\mu_t(dx) = \frac{\mathbb{E}\left[\delta_{X_t}(dx)e^{-\int_0^t V(X_s)ds}\right]}{\mathbb{E}\left[e^{-\int_0^t V(X_s)ds}\right]}$$

Define the functional J by

$$J(\boldsymbol{\theta}, \boldsymbol{\mu}) = \begin{cases} \int_{0}^{T} \int f(x, \phi_{t}(x)) \mu_{t}(dx) \ dt + \int g(x) \mu_{T}(dx), & \text{if } (\boldsymbol{\theta}, \boldsymbol{\mu}) \in \mathbb{A}^{(2)} \\ \infty & \text{otherwise.} \end{cases}$$
(10)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem:

There exists a couple $(\theta, \mu) = (\phi_t, \mu_t)_{0 \le t \le T} \in \mathbb{A}^{(2)}$ minimizing $J(\phi, \mu)$.

Characterizaton of the Optimal Control

The Adjoint PDE

If $\phi = (\phi_t)_{0 \le t \le T}$ is a bounded feedback function and if $\mu = (\mu_t)_{0 \le \le T}$ is the solution of the corresponding FPK equation, the adjoint equation reads

$$0 = \partial_t u + \frac{1}{2}\Delta_x u + \phi_t \cdot \nabla_x u - (V - \langle \mu, V \rangle)u + V \langle \mu, u \rangle + \frac{1}{2}|\phi_t|^2 + \tilde{t}$$

Assumption:

$$K_{\phi} := \sup_{(t,x)\in[0,T] imes\mathbb{R}^d} \mathbb{E}\int_t^T |\phi_s(X^{t,x}_s)|^2 ds < \infty$$

where $X^{t,x} = (X_s^{t,x})_{t \le s \le T}$ satisfies the state equation $dX_s = \phi_s(X_s)ds + dW_s$ over the interval [t, T] with initial condition $X_t = x$. Clearly satisfied when

- φ is bounded.
- $\phi \in L^q([0, T]; L^p(\mathbb{R}^d))$ for some $p \ge 2$, q > 2, $\frac{d}{p} + \frac{2}{q} < 1$.

Theorem:

For each feedback function ϕ satisfying the above assumption, for each continuous flow $\mu = (\mu_t)_{0 \le t \le T}$ of probability measures on \mathbb{R}^d , the adjoint PDE admits a unique solution in the sense of viscosity. Uniqueness in the class of bounded continuous functions.

Regularity of the Co-State

A First A-Priori Bound.

$$\|u_t\|_{\infty} \leq \frac{e^t}{2} (e^{2(T-t)}-1) \|\tilde{f}\|_{\infty} + \frac{e^{2T}}{2} K_{\phi} + e^T \|g\|_{\infty}.$$

A Second A-Priori Bound. (using the fact that \tilde{u} is a solution of the adjoint PDE for a smooth $\tilde{\phi}$ and a smooth running cost \tilde{F} .)

$$\int_{0}^{T} \int_{\mathbb{R}^{d}} |\nabla \tilde{u}_{t}(x)|^{2} \mu_{t}(dx) dt \leq 4e^{4T} \|\tilde{F}\|_{\infty}^{2} \left(1 + \frac{3}{2}T + \|\tilde{\phi} - \phi\|_{L^{2}(\mu)}^{2}\right)$$

Theorem:

If $(\phi, \mu) \in \mathbb{A}^{(2)}(\mu_0)$ is such that ϕ is bounded, the viscosity solution of the adjoint equation is a bounded continuous function on \mathbb{R}^d whose first order derivatives in $x \in \mathbb{R}^d$ in the sense of distributions are functions in $L^2([0, T] \times \mathbb{R}^d, \mu)$ and $L^2_{loc}([0, T] \times \mathbb{R}^d, dt dx)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let

• $\phi = (\phi_t)_{0 \le t \le T}$ be a bounded measurable feedback control function,

<□ > < @ > < E > < E > E のQ @

Let

• $\phi = (\phi_t)_{0 \le t \le T}$ be a bounded measurable feedback control function,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• $\mu = (\mu_t)_{0 \le t \le T}$ be the corresponding solution of the FPK equation

Let

• $\phi = (\phi_t)_{0 \le t \le T}$ be a bounded measurable feedback control function,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $\mu = (\mu_t)_{0 \le t \le T}$ be the corresponding solution of the FPK equation
- u the solution of the corresponding adjoint equation.

Let

- $\phi = (\phi_t)_{0 \le t \le T}$ be a bounded measurable feedback control function,
- $\mu = (\mu_t)_{0 \le t \le T}$ be the corresponding solution of the FPK equation
- u the solution of the corresponding adjoint equation.

If $\beta = (\beta_t)_{0 \le t \le T}$ is another bounded measurable feedback control function, we have:

$$\frac{d}{d\epsilon}J(\boldsymbol{\phi}+\epsilon\boldsymbol{\beta})\Big|_{\epsilon=0}=\int_0^T<\beta_t(\nabla u_t+\phi_t),\mu_t>\ dt.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let

- $\phi = (\phi_t)_{0 \le t \le T}$ be a bounded measurable feedback control function,
- $\mu = (\mu_t)_{0 \le t \le T}$ be the corresponding solution of the FPK equation
- u the solution of the corresponding adjoint equation.

If $\beta = (\beta_t)_{0 \le t \le T}$ is another bounded measurable feedback control function, we have:

$$\frac{d}{d\epsilon}J(\boldsymbol{\phi}+\epsilon\boldsymbol{\beta})\Big|_{\epsilon=0}=\int_0^T<\beta_t(\nabla u_t+\phi_t),\mu_t>\,dt.$$

As a result, if ϕ is a critical point, then

$$\phi_t(\mathbf{x}) = -\nabla u_t(\mathbf{x}), \qquad \mu_t - a.s. \ \mathbf{x} \in \mathbb{R}^d, \quad a.e. \ t \in [0, T].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Characterization of the Optimum

The optimal control $\phi_t(x) = -\nabla u_t(x)$ is obtained from the (unique) solution of the the **forward backward non-local PDE system**:

 $\begin{cases} \partial_t \mu = \frac{1}{2} \Delta_x \mu + \operatorname{div}_x (\nabla_x u \ \mu) - (V - < \mu, V >) \mu \\ 0 = \partial_t u + \frac{1}{2} \Delta_x u - \frac{1}{2} |\nabla_x u|^2 - (V - < \mu, V >) u + V < \mu, u > + \tilde{t} \\ \text{on the support of } \mu. \end{cases}$

Proposition:

For each continuous flow $\hat{\mu} = (\hat{\mu}_t)_{0 \le t \le T}$ of probability measures on \mathbb{R}^d , the second PDE (above) admits a unique solution in the sense of viscosity which is continuously differentiable with uniformly bounded first derivatives. Moreover, this solution is actually a classical solution when \tilde{t} and g are three times differentiable with bounded derivatives.

The Open Loop Problem

Mimicking Argument: Gyongi, Brunick-Shreve

Given

- $\alpha = (\alpha_t)_{0 \le t \le T}$ general adapted **open loop** control process
- corresponding state process $\mathbf{X} = (X_t)_{0 \le t \le T}$ satisfying $dX_t = \alpha_t dt + dW_t$
- additive functional $A_t = \int_0^t V(X_s) ds$

one can find

► a state process $\hat{\mathbf{X}} = (\hat{X}_t)_{0 \le t \le T}$ satisfying $d\hat{X}_t = \psi_t(\hat{X}_t, \hat{A}_t)dt + d\hat{W}_t$

- with additive functional $\hat{A}_t = \int_0^t V(\hat{X}_s) ds$
- the deterministic (feedback) function ψ_t given by $\psi_t(x, a) = \mathbb{E}[\alpha_t | X_t = x, A_t = a]$
- ► (X_t, A_t) has the same distribution as (\hat{X}_t, \hat{A}_t) , $t \in [0, T]$

The Open Loop Optimization Problem

$$J^{V}(\alpha) = \int_{0}^{T} \frac{\mathbb{E}^{\mathbb{P}}\left[f(X_{t}, \alpha_{t})e^{-A_{t}}\right]}{\mathbb{E}^{\mathbb{P}}\left[e^{-A_{t}}\right]} dt + \frac{\mathbb{E}^{\mathbb{P}}\left[g(X_{T})e^{-A_{T}}\right]}{\mathbb{E}^{\mathbb{P}}\left[e^{-A_{T}}\right]} \\ = \int_{0}^{T} \frac{\mathbb{E}^{\mathbb{P}}\left[\mathbb{E}^{\mathbb{P}}[f(X_{t}, \alpha_{t})|X_{t}, A_{t}]e^{-A_{t}}\right]}{\mathbb{E}^{\mathbb{P}}\left[e^{-A_{t}}\right]} dt + \frac{\mathbb{E}^{\mathbb{P}}\left[g(X_{T})e^{-A_{T}}\right]}{\mathbb{E}^{\mathbb{P}}\left[e^{-A_{T}}\right]} \\ \ge \int_{0}^{T} \frac{\mathbb{E}^{\mathbb{P}}\left[f(X_{t}, \mathbb{E}[\alpha_{t}|X_{t}, A_{t}])e^{-A_{t}}\right]}{\mathbb{E}^{\mathbb{P}}\left[e^{-A_{t}}\right]} dt + \frac{\mathbb{E}^{\mathbb{P}}\left[g(X_{T})e^{-A_{T}}\right]}{\mathbb{E}^{\mathbb{P}}\left[e^{-A_{T}}\right]} \end{aligned}$$

by Jensen's inequality

$$= \int_0^T \frac{\mathbb{E}^{\hat{\mathbb{P}}}\left[f(\hat{X}_t, \psi_t(\hat{X}_t, \hat{A}_t))e^{-\hat{A}_t}\right]}{\mathbb{E}^{\hat{\mathbb{P}}}\left[e^{-\hat{A}_t}\right]} dt + \frac{\mathbb{E}^{\hat{\mathbb{P}}}\left[g(\hat{X}_T)e^{-\hat{A}_T}\right]}{\mathbb{E}^{\hat{\mathbb{P}}}\left[e^{-\hat{A}_T}\right]}$$
$$= J^V(\hat{\boldsymbol{\alpha}}),$$

with $\hat{\alpha}_t = \psi_t(\hat{X}_t, \hat{A}_t)$. Consequently:

$$\inf_{\alpha} J^{V}(\alpha) = \inf_{\psi} \int_{0}^{\tau} \frac{\mathbb{E}\left[f(\hat{X}_{t}, \psi_{t}(\hat{X}_{t}, \hat{A}_{t}))e^{-\hat{A}_{t}}\right]}{\mathbb{E}\left[e^{-\hat{A}_{t}}\right]} dt + \frac{\mathbb{E}\left[g(\hat{X}_{\tau})e^{-\hat{A}_{\tau}}\right]}{\mathbb{E}\left[e^{-\hat{A}_{\tau}}\right]} dt$$

Value function over ALL open loop controls is the same as over FEEDBACK functions of (X_t, A_t)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

A Second Deterministic Control Problem over Probabilities

Given $\alpha_t = \psi_t(X_t, A_t)$

$$\begin{cases} dX_t = \psi_t(X_t, A_t)dt + dW_t \\ dA_t = V(X_t)dt. \end{cases}$$

Corresponding cost $J^V(oldsymbollpha)=J^{(2)}(\psi)$

$$J^{(2)}(\psi) = \int_0^T \frac{\mathbb{E}\left[f(X_t, \psi_t(X_t, A_t))e^{-A_t}\right]}{\mathbb{E}\left[e^{-A_t}\right]} dt + \frac{\mathbb{E}\left[g(X_T)e^{-A_T}\right]}{\mathbb{E}\left[e^{-A_T}\right]}$$
$$= \int_0^T \left(\int \mu_t(dx, da)f(x, \psi_t(x, a))\right) dt + \int \mu_T(dx, da)g(x)$$

where μ_t is the Gibbs probability measure:

$$\mu_t(dx, da) = \frac{\mathbb{E}[\delta_{(X_t, A_t)}(dx, da)e^{-A_t}]}{\mathbb{E}[e^{-A_t}]}, \quad 0 \le t \le T.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

A Second Deterministic Control Problem over Probabilities

Given $\alpha_t = \psi_t(X_t, A_t)$

$$\begin{cases} dX_t = \psi_t(X_t, A_t)dt + dW_t \\ dA_t = V(X_t)dt. \end{cases}$$

Corresponding cost $J^V(oldsymbollpha)=J^{(2)}(\psi)$

where μ_t is the Gibbs probability measure:

$$\mu_t(dx, da) = \frac{\mathbb{E}[\delta_{(X_t, A_t)}(dx, da)e^{-A_t}]}{\mathbb{E}[e^{-A_t}]}, \quad 0 \le t \le T.$$

FPK Equation

The measure valued function $t \mapsto \mu_t^{(1)}$ satisfies the forward FPK equation:

$$\partial_t \mu = rac{1}{2} \Delta_x \mu - \operatorname{div}_x(\psi_t \mu) - V \partial_a \mu - (V - \langle \mu, V \rangle) \mu$$

in the sense of Schwartz distributions with $\mu_0 = \mu_0(dx) \otimes \delta_0(da)$ and

$$<\mu,V>=\int_{\mathbb{R}^d}\int_{[0,T]}V(x)\mu(dx,da).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

The Corresponding Optimization Problem

Need to redo the entire analysis

- Existence of Optima
- Solution of the Adjoint PDE
- A priori bounds
- Regularity of co-states

The adjoint PDE is degenerate, approach via vanishing viscosity solutions

The Adjoint PDE and the Forward-Backward System

Rewriting FPK and the adjoint equations for the minimizer (still n the case of separable running cost) PDE System

 $\begin{cases} \partial_t \mu = \frac{1}{2} \Delta_x \mu + \operatorname{div}_x (\nabla_x u \ \mu) - V \partial_a \mu - (V - \langle \mu, V \rangle) \mu \\ 0 = \partial_t u + \frac{1}{2} \Delta_x u - \frac{1}{2} |\nabla_x u|^2 + V \partial_a u - (V - \langle \mu, V \rangle) u + V \langle \mu, u \rangle + \tilde{t}. \end{cases}$

Summary

Comparison of the solutions of the conditional control problems

close loop case (feedback functions of (t, x))

• $\alpha_t = \phi_t(X_t)$, state $\mu_t(dx) = \mathbb{E}_{x_0}[\delta_{X_t}(dx)e^{-A_t}]/\mathbb{E}_{x_0}[e^{-A_t}]$

general open loop case (feedback functions of (t, x, a) because of the mimicking result)

$$\ \ \alpha_t = \psi_t(X_t, A_t), \text{ state } \mu_t(dx, da) = \mathbb{E}_{x_0}[\delta_{(X_t, A_t)}(dx, da)e^{-A_t}]/\mathbb{E}_{x_0}[e^{-A_t}]$$

Dynamics (FPK) + Adjoint Equation

Closed loop case PDE System (1)

$$\begin{cases} \partial_t \mu = \frac{1}{2} \Delta \mu + \operatorname{div}_x (\nabla_x u \ \mu) - (V - \langle \mu, V \rangle) \mu \\ 0 = \partial_t u + \frac{1}{2} \Delta_x u - \frac{1}{2} |\nabla_x u|^2 - (V - \langle \mu, V \rangle) u + V \langle \mu, u \rangle + \tilde{f}. \end{cases}$$

Open loop case (after mimicking) PDE System (2)

$$\begin{cases} \partial_t \mu = \frac{1}{2} \Delta_x \mu + \operatorname{div}_x (\nabla_x u \ \mu) - V \partial_a \mu - (V - \langle \mu, V \rangle) \mu \\ 0 = \partial_t u + \frac{1}{2} \Delta_x u - \frac{1}{2} |\nabla_x u|^2 + V \partial_a u - (V - \langle \mu, V \rangle) u + V \langle \mu, u \rangle + \tilde{f}. \end{cases}$$

They are **identical** once we notice that u in (2) **does not depend upon** a, implying that **the first marginal of** μ solves the FPK in (1) !

Equality of the Value Functions

Once we get to that point, simple consequence of Jensen's inequality.

Samuel Daudin

Back to the Original Hard Killing Model

Main obstacle to the proof of the equality of the value functions.

No Mimicking Theorem Available

・ロト < 団ト < 三ト < 三ト < 回 < つへで

A New Mimicking Theorem

Let $x_0 \in D$ and let us assume that $\mathbf{X} = (X_t)_{0 \le t \le T}$ is an Itô process of the form

$$X_t = x_0 + \int_0^t \alpha_s \, ds + W_t$$

where

- $\mathbf{W} = (W_t)_{0 \le t \le T}$ is a Wiener process
- $\alpha = (\alpha_t)_{0 \le t \le T}$ is a bounded progressively measurable process.

Then there exist

- a (deterministic) bounded measurable function $\tilde{\alpha} : [0, T] \times \mathbb{R}^d \mapsto \mathbb{R}^d$
- a weak solution $\tilde{\mathbf{X}} = (\tilde{X}_t)_{0 \le t \le T}$ of the SDE

$$\tilde{X}_t = x_0 + \int_0^t \tilde{\alpha}(s, \tilde{X}_s) \, ds + \tilde{W}_t$$

such that

$$\blacktriangleright \mathcal{L}(X_t \mid \tau(X) > t) = \mathcal{L}(\tilde{X}_t \mid \tau(\tilde{X}) > t) \text{ for all } t \in [0, T]$$

and we may choose:

$$\tilde{\alpha}(t, x) = \mathbf{1}_{D}(x) \mathbb{E}[\alpha_{t} \mid X_{t \wedge \tau(X)} = x]$$

Main Technical Tool

If $b : [0, \infty) \times \mathbb{R}^d \ni (t, x) \mapsto b(t, x) \in \mathbb{R}^d$ is a bounded measurable function, the SDE

$$dX_t = b(t, X_t)dt + \mathbf{1}_D(X_t)dW_t$$

is well posed (i.e. existence and uniqueness of a weak solution hold for every initial condition $x \in \mathbb{R}^d$)

Equality of the Value Functionsl

$$J^{\tau}(\boldsymbol{\alpha}) = \int_{0}^{\tau} \frac{\mathbb{E}^{\mathbb{P}}\left[f(X_{t\wedge\tau(X)},\alpha_{t})\mathbf{1}_{\tau(X)>t}\right]}{\mathbb{E}^{\mathbb{P}}[\tau(X)>t]} dt + \frac{\mathbb{E}^{\mathbb{P}}[g(X_{T})\mathbf{1}_{\tau(X)>T}]}{\mathbb{P}[\tau(X)>T]}$$
$$= \int_{0}^{\tau} \frac{\mathbb{E}^{\mathbb{P}}\left[\mathbb{E}^{\mathbb{P}}[f(X_{t\wedge\tau(X)},\alpha_{t})|X_{t\wedge\tau(X)}]\mathbf{1}_{\tau(X)>t}\right]}{\mathbb{E}^{\mathbb{P}}[\tau(X)>t]} dt + \frac{\mathbb{E}^{\mathbb{P}}\left[g(X_{T})\mathbf{1}_{\tau(X)>T}\right]}{\mathbb{P}[\tau(X)>T]}$$

as $\mathbf{1}_{\tau(X)>t}$ is measurable with respect to $X_{t\wedge\tau(X)}$

$$J^{\tau}(\boldsymbol{\alpha}) \geq \int_{0}^{\tau} \frac{\mathbb{E}^{\mathbb{P}}\left[f\left(X_{t \wedge \tau(X)}, \mathbb{E}^{\mathbb{P}}[\alpha_{t}|X_{t \wedge \tau(X)}]\right)\mathbf{1}_{\tau(X) > t}\right]}{\mathbb{P}[\tau(X) > t]} dt + \frac{\mathbb{E}^{\mathbb{P}}\left[g(X_{T})\mathbf{1}_{\tau(X) > \tau}\right]}{\mathbb{P}[\tau(X) > T]}$$

convexity of f in the variable α , so

$$J^{\tau}(\boldsymbol{\alpha}) \geq \int_{0}^{T} \frac{\mathbb{E}^{\mathbb{P}}\left[f\left(X_{t\wedge\tau(X)}, \tilde{\alpha}(t, X_{t\wedge\tau(X)})\mathbf{1}_{\tau(X)>t}\right)\right]}{\mathbb{P}[\tau(X)>t]} dt + \frac{\mathbb{E}^{\mathbb{P}}\left[g(X_{T}\mathbf{1}_{\tau(X)>T}\right]}{\mathbb{P}[\tau(X)>T]} \\ = \int_{0}^{T} \frac{\mathbb{E}^{\mathbb{P}}\left[f\left(X_{t}, \tilde{\alpha}(t, X_{t})\mathbf{1}_{\tau(X)>t}\right)\right]}{\mathbb{P}[\tau(X)>t]} dt + \frac{\mathbb{E}^{\mathbb{P}}\left[g(X_{T}\mathbf{1}_{\tau(X)>T}\right]}{\mathbb{P}[\tau(X)>T]} \\ = \int_{0}^{T} \mathbb{E}^{\mathbb{P}}\left[f\left(X_{t}, \tilde{\alpha}(t, X_{t}) \mid \tau(X)>t\right] dt + \mathbb{E}^{\mathbb{P}}\left[g(X_{T}) \mid \tau(X)>T\right] \\ = \int_{0}^{T} \mathbb{E}^{\mathbb{P}}\left[f\left(\tilde{X}_{t}, \tilde{\alpha}(t, \tilde{X}_{t}) \mid \tau(\tilde{X})>t\right] dt + \mathbb{E}^{\mathbb{P}}\left[g(\tilde{X}_{T}) \mid \tau(\tilde{X})>T\right] \\ = \int_{0}^{T} \mathbb{E}^{\mathbb{P}}\left[f\left(\tilde{X}_{t}, \tilde{\alpha}(t, \tilde{X}_{t}) \mid \tau(\tilde{X})>t\right] dt + \mathbb{E}^{\mathbb{P}}\left[g(\tilde{X}_{T}) \mid \tau(\tilde{X})>T\right] \\ \end{bmatrix}$$

What's Next?

A Lot of Questions

Minimization of $J(\phi) = \int_0^T \langle f(\cdot, \phi_t(\cdot)), \mu_t \rangle \ dt + \langle g, \mu_T \rangle$ for $\mu_t = \mathcal{L}(X_t | \tau > t)$

F-P-K equation

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t - \operatorname{div}_x(\phi_t \mu_t) + h_{\phi, \mu_0}(t) \mu_t,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where

$$h_{\phi,\mu_0}(t) = \frac{t_{\phi,\mu_0}(t)}{1 - F_{\phi,\mu_0}(t)}$$
 is the hazard rate of the hitting time τ

What's Next?

A Lot of Questions

Minimization of

$$J(\phi) = \int_0^T \langle f(\cdot, \phi_t(\cdot)), \mu_t \rangle dt + \langle g, \mu_T \rangle$$

> t)

for $\mu_t = \mathcal{L}(X_t | \tau > t)$

F-P-K equation

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t - \operatorname{div}_x(\phi_t \mu_t) + h_{\phi, \mu_0}(t) \mu_t,$$

where

$$h_{\phi,\mu_0}(t) = \frac{f_{\phi,\mu_0}(t)}{1 - F_{\phi,\mu_0}(t)}$$
 is the hazard rate of the hitting time τ

$$F_{\phi,\mu_0}(t) = \mathbb{P}[\tau \le t]$$

What's Next?

A Lot of Questions

Minimization of

$$J(\phi) = \int_0^T \langle f(\cdot, \phi_t(\cdot)), \mu_t \rangle dt + \langle g, \mu_T \rangle$$

for $\mu_t = \mathcal{L}(X_t | \tau > t)$

F-P-K equation

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t - \operatorname{div}_x(\phi_t \mu_t) + h_{\phi,\mu_0}(t) \mu_t,$$

where

$$\begin{array}{l} \blacktriangleright \quad h_{\phi,\mu_0}(t) = \frac{f_{\phi,\mu_0}(t)}{1 - F_{\phi,\mu_0}(t)} \text{ is the hazard rate of the hitting time } \tau \\ \rule{0ex}{3ex} F_{\phi,\mu_0}(t) = \mathbb{P}[\tau \leq t] \\ \rule{0ex}{3ex} f_{\phi,\mu_0}(t) \text{ is the density} \end{array}$$

Adjoint equation ???

$$\partial_t u = -\frac{1}{2}\Delta_x u - \phi_t \cdot \nabla_x u - h_{\phi,\mu_0}(t)u - f(\cdot,\phi_t(\cdot))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

<□ > < @ > < E > < E > E のQ @

• If $\beta = (\beta_t)_{0 \le t \le T}$ is another bounded measurable feedback control"

$$\mathbf{E}_{d\epsilon} \mathbb{P}[\tau^{\phi+\epsilon\beta} > t] \Big|_{\epsilon=0} = \mathbb{E}\Big[\mathbf{1}_{\tau\phi>t} \int_0^t \beta_s(X_s^{\phi}) dW_s\Big].$$

• If $\beta = (\beta_t)_{0 \le t \le T}$ is another bounded measurable feedback control"

$$\begin{split} & \left. \begin{array}{l} \bullet \quad \frac{d}{d\epsilon} \mathbb{P}[\tau^{\phi+\epsilon\beta} > t] \right|_{\epsilon=0} = \mathbb{E}\left[\mathbf{1}_{\tau^{\phi} > t} \int_{0}^{t} \beta_{s}(X_{s}^{\phi}) dW_{s}\right] \\ & \left. \begin{array}{l} \bullet \quad \frac{d}{d\epsilon} h_{\phi+\epsilon\beta,\mu_{0}}(t) \right|_{\epsilon=0} = -\mathbb{E}\left[\int_{0}^{t} \beta_{r}(X_{s}^{\phi}) dW_{r} | \tau^{\phi} = t\right] f_{\phi,\mu_{0}}(t) \end{split}$$

• If $\beta = (\beta_t)_{0 \le t \le T}$ is another bounded measurable feedback control"

$$\begin{aligned} & \left. \frac{d}{d\epsilon} \mathbb{P}[\tau^{\phi+\epsilon\beta} > t] \right|_{\epsilon=0} = \mathbb{E} \Big[\mathbf{1}_{\tau^{\phi} > t} \int_{0}^{t} \beta_{s}(X_{s}^{\phi}) dW_{s} \Big]. \\ & \left. \frac{d}{d\epsilon} h_{\phi+\epsilon\beta,\mu_{0}}(t) \right|_{\epsilon=0} = -\mathbb{E} \Big[\int_{0}^{t} \beta_{r}(X_{r}^{\phi}) dW_{r} | \tau^{\phi} = t \Big] f_{\phi,\mu_{0}}(t). \\ & \lambda_{t} = \lim_{\epsilon \searrow 0} \frac{\mu_{t}^{\phi+\epsilon\beta} - \mu_{t}^{\phi}}{\epsilon} \text{ exists as a mass 0 finite signed measure } \lambda_{t} \text{ which satisfies} \\ & \partial_{t}\lambda_{t} = \frac{1}{2} \Delta \lambda_{t} - \operatorname{div}(\phi_{t}\lambda_{t}) - \operatorname{div}(\beta_{t}\mu_{t}) + h_{\phi,\mu_{0}}\lambda_{t} + \frac{d}{d\epsilon} h_{\phi+\epsilon\beta,\mu_{0}}(t) \Big|_{\epsilon=0} \mu_{t} \end{aligned}$$

<□ > < @ > < E > < E > E のQ @

• If $\beta = (\beta_t)_{0 \le t \le T}$ is another bounded measurable feedback control"

$$\begin{aligned} & \left. \frac{d}{d\epsilon} \mathbb{P}[\tau^{\phi+\epsilon\beta} > t] \right|_{\epsilon=0} = \mathbb{E} \Big[\mathbf{1}_{\tau^{\phi} > t} \int_{0}^{t} \beta_{s}(X_{s}^{\phi}) dW_{s} \Big]. \\ & \left. \frac{d}{d\epsilon} h_{\phi+\epsilon\beta,\mu_{0}}(t) \right|_{\epsilon=0} = -\mathbb{E} \Big[\int_{0}^{t} \beta_{r}(X_{r}^{\phi}) dW_{r} | \tau^{\phi} = t \Big] f_{\phi,\mu_{0}}(t). \\ & \left. \lambda_{t} = \lim_{\epsilon \searrow 0} \frac{\mu_{t}^{\phi+\epsilon\beta} - \mu_{t}^{\phi}}{\epsilon} \text{ exists as a mass 0 finite signed measure } \lambda_{t} \text{ which satisfies} \right. \\ & \left. \partial_{t} \lambda_{t} = \frac{1}{2} \Delta \lambda_{t} - \operatorname{div}(\phi_{t}\lambda_{t}) - \operatorname{div}(\beta_{t}\mu_{t}) + h_{\phi,\mu_{0}}\lambda_{t} + \frac{d}{d\epsilon} h_{\phi+\epsilon\beta,\mu_{0}}(t) \right|_{\epsilon=0} \mu_{t} \end{aligned}$$

Gateaux derivative of the objective function ???

$$\left.\frac{d}{d\epsilon}J(\phi+\epsilon\beta)\right|_{\epsilon=0} = \int_0^T < \beta_t(\nabla u_t + \phi_t), \mu_t > dt. \text{ presumably not}$$

(ロ)、

• If $\beta = (\beta_t)_{0 \le t \le T}$ is another bounded measurable feedback control"

$$\begin{aligned} & \left| \frac{d}{d\epsilon} \mathbb{P}[\tau^{\phi+\epsilon\beta} > t] \right|_{\epsilon=0} = \mathbb{E} \Big[\mathbf{1}_{\tau^{\phi} > t} \int_{0}^{t} \beta_{s}(X_{s}^{\phi}) dW_{s} \Big]. \\ & \left| \frac{d}{d\epsilon} h_{\phi+\epsilon\beta,\mu_{0}}(t) \right|_{\epsilon=0} = -\mathbb{E} \Big[\int_{0}^{t} \beta_{r}(X_{r}^{\phi}) dW_{r} | \tau^{\phi} = t \Big] f_{\phi,\mu_{0}}(t). \\ & \lambda_{t} = \lim_{\epsilon \searrow 0} \frac{\mu_{t}^{\phi+\epsilon\beta} - \mu_{t}^{\phi}}{\epsilon} \text{ exists as a mass 0 finite signed measure } \lambda_{t} \text{ which satisfies} \\ & \partial_{t}\lambda_{t} = \frac{1}{2} \Delta \lambda_{t} - \operatorname{div}(\phi_{t}\lambda_{t}) - \operatorname{div}(\beta_{t}\mu_{t}) + h_{\phi,\mu_{0}}\lambda_{t} + \frac{d}{d\epsilon} h_{\phi+\epsilon\beta,\mu_{0}}(t) \Big|_{\epsilon=0} \mu_{t} \end{aligned}$$

Gateaux derivative of the objective function ???

$$\left.\frac{d}{d\epsilon}J(\phi+\epsilon\beta)\right|_{\epsilon=0} = \int_0^T < \beta_t(\nabla u_t + \phi_t), \mu_t > dt. \text{ presumably not}$$

• if ϕ is a critical point, do we still have?

$$\phi_t(x) = -\nabla u_t(x), \qquad \mu_t - a.s. \ x \in \mathbb{R}^d, \quad a.e. \ t \in [0, T].$$
 presumably not

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●