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Where it all started

▶ Two lectures by P.L. Lions at Collège de France in November 2016
▶ Not much after that except for a numeric paper by Achdou, Laurière & Lions

Original model:

▶ dXt = αt dt + dWt in Rd ;
▶ (αt )0≤t≤T adapted control process;

▶ D bounded open domain in Rd , with smooth boundary ∂D;
▶ τ = inf{t > 0; Xt /∈ D} first exit time;

▶ Running cost function f (x, α) = 1
2 |α|

2 + f̃ (x)
▶ Terminal cost function g bounded measurable

Challenge: minimize over open loop and/or Markovian control processes

Jτ (α) =

∫ T

0
E[f (Xt , αt )|τ ≥ t] dt + E[g(XT )|τ ≥ T ]

=

∫ T

0

E
[
f (Xt , αt )1τ≥t

]
P[τ ≥ t]

dt +
E
[
g(XT )1τ≥T

]
P[τ ≥ T ]

.

Not a standard optimal control problem !
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Motivation from Evolution Biology

Altruistic individuals foraging for food independently of each other in a territory D, and sharing
among the surviving individuals in an egalitarian manner.

▶ Individuals die when they leave the territory.

▶ For i = 1, · · · ,Nt , X i
t are the positions at time t of the Nt individuals still alive

▶ Resources accumulated in the amount f (X i
t )

▶ All the resources are aggregated, and redistributed in equal amounts to the survivors

▶ Resource allocated to each individual will be: 1
Nt

∑Nt
i=1 f (X i

t ).

▶ Nt/N → P[τ > t] probability that a typical individual is still alive at time t ,

▶ 1
N
∑Nt

i=1 f (X i
t ) =

1
N
∑N

i=1 f (X i
t )1τ(Xi )>t → E[f (Xt )1τ>t ].

Optimization of the fitness of the individuals still alive naturally leads to the conditional control

problem which we propose to study.
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Ill. J. Math Approach: Feynman-Kac Relaxation

Soft killing instead of hard killing

JV (α) =

∫ T

0

E
[
f (Xt , αt )e

−
∫ t
0 V (Xs )ds

]
E
[
e−

∫ t
0 V (Xs )ds

] dt +
E
[
g(XT )e

−
∫ T
0 V (Xs )ds

]
E
[
e−

∫ T
0 V (Xs )ds

] . (1)

Original problem corresponds to V = V∞ given by:

V∞(x) =

{
0 if x ∈ D
∞ otherwise,

(2)

in which case: ∫ t

0
V∞(Xs)ds =

{
0 if Xs ∈ D, 0 ≤ s ≤ t
∞ if Xs /∈ D for some 0 ≤ s ≤ t,

(3)

so that:
e−

∫ t
0 V∞(Xs )ds = 1[Xs∈D, 0≤s≤t] = 1[τD≥t],

where τD is the first exit time of the domain D defined as:

τD = inf{t ≥ 0; Xt /∈ D}.

Accordingly:

JV∞
(α) =

∫ T

0
E
[
f (Xt , αt )

∣∣τD ≥ t
]
dt + E

[
g(XT )

∣∣τD ≥ T
]
, (4)



Approximation Procedure

Approximate V∞ by V n = nV 1 where
▶ V 1(x) = χϵ(d(x,D))

▶ d(x,D) denotes the distance from x ∈ Rd to the domain D,
▶ ϵ > 0 is an arbitrary
▶

χ
ϵ(d) =


0 if d ≤ 0
linear if 0 ≤ d ≤ ϵ

1 if d ≥ ϵ.

(5)

Approximation Result

If X = (Xt )t≥0 satisfies Xt = x0 +
∫ t

0 αsds + Wt for some fixed α and x0 ∈ D, then

⋄ for any bounded function g

E[g(XT ) | τD > T ] = lim
n→∞

E[g(XT )e
−n

∫ T
0 V1(Xs )ds]

E[e−n
∫ T
0 V1(Xs )ds

]
. (6)

⋄ Similarly, if
∫ T

0 E[|f (Xt , αt )|]dt < ∞, we also have:∫ T

0
E[f (Xt , αt ) | τD > t]dt = lim

n→∞

∫ T

0

E[f (Xt , αt )e
−n

∫ t
0 V1(Xs )ds]

E[e−n
∫ t
0 V1(Xs )ds

]
. (7)



Assumptions

▶ The running and terminal cost functions satisfy:

▶ The action space A is a closed convex subset of Rd ;

▶ The function g is continuous and bounded on Rd ;

▶ For each α ∈ A, the function f (·, α) is continuous and bounded on Rd .

▶ For each x ∈ Rd , the function f (x , ·) is convex on A.

Separable case:

f (x , α) =
1
2
|α|2 + f̃ (x)

for some measurable bounded f̃

▶ As for the relaxation potential

▶ The function V is continuous on Rd and 0 ≤ V ≤ 1.



First Deterministic Control Problem over a Space of Probabilities

Given αt = ϕt (Xt )
dXt = ϕt (Xt )dt + dWt

Corresponding cost JV (α) = J(1)(ϕ)

J(1)(ϕ) =

∫ T

0

∫
f (x, ϕt (x))µt (dx) dt +

∫
g(x)µT (dx), (8)

where we use the notation µt for the probability measure:

µt (dy) =
E[δXt (dy)e−At ]

E[e−At ]
, 0 ≤ t ≤ T , (9)

where At =
∫ t

0 V (Xs)ds.

FPK Equation

The measure valued function t 7→ µt satisfies the forward FPK equation:

∂tµt =
1
2
∆µt − div(ϕtµt ) − (V− < µt ,V >)µt ,

in the sense of Schwartz distributions with µ0 = µ0(dx) and

< µ,V >=

∫
Rd

V (x)µ(dx).

.
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A Non-Local Superposition Principle

Known for Solutions of Standard FPK equations

Let us start with a couple (ϕ,µ) such that

▶ ϕ =
(
ϕt (x)

)
0≤t≤T , x∈Rd is a Rd -valued measurable function on [0, T ] × Rd

▶ µ = (µt )0≤t≤T is a measurable flow of probability measures satisfying

▶ ∫ T
0

∫
Rd |ϕt (x)|2µt (dx)dt < ∞

▶ the non-local FPK equation

∂tµt =
1
2
∆µt − div(ϕtµt ) − (V− < µt ,V >)µt ,

Then there exists a weak solution X = (Xt )0≤t≤T of the stochastic differential equation

dXt = ϕt (Xt )dt + dWt

with X0 ∼ µ0 and such that

µt (dy) =
E[δXt (dy)e−At ]

E[e−At ]
, 0 ≤ t ≤ T ,

with At =
∫ t

0 V (Xs)ds. Moreover sup0≤t≤T E[|Xt |2] < ∞.
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Existence of an Optimal Control

Ideas from Optimal Transport

Notation: A(2)(µ0) set of couples (θ,µ), θ = (θt )0≤t≤T , µ = (µt )0≤t≤T , for which θt is
absolutely continuous with respect to µt and there exists a measurable function
[0, T ] × Rd ∋ (t, x) 7→ ϕt (x) ∈ Rd such that

dθt

dµt
(x) = ϕt (x) and

∫ T

0

∫
Rd
ϕt (x)

2
µt (dx)dt < ∞.

If (θ,µ) ∈ A(2)(µ0), the superposition principle implies that there exists a process
X = (Xt )0≤t≤T satisfying dXt = ϕt (Xt )dt + dWt , and such that the probability measures µt are
given by

µt (dx) =
E
[
δXt (dx)e−

∫ t
0 V (Xs )ds]

E
[
e−

∫ t
0 V (Xs )ds] .

Define the functional J by

J(θ,µ) =


∫ T

0

∫
f (x, ϕt (x))µt (dx) dt +

∫
g(x)µT (dx), if (θ,µ) ∈ A(2)

∞ otherwise.
(10)

Theorem:

There exists a couple (θ,µ) = (ϕt , µt )0≤t≤T ∈ A(2) minimizing J(ϕ,µ).



Characterizaton of the Optimal Control

The Adjoint PDE

If ϕ = (ϕt )0≤t≤T is a bounded feedback function and if µ = (µt )0≤≤T is the solution of the
corresponding FPK equation, the adjoint equation reads

0 = ∂t u +
1
2
∆x u + ϕt · ∇x u − (V− < µ,V >)u + V < µ, u > +

1
2
|ϕt |2 + f̃

Assumption:

Kϕ := sup
(t,x)∈[0,T ]×Rd

E
∫ T

t
|ϕs(X

t,x
s )|2ds < ∞

where Xt,x = (X t,x
s )t≤s≤T satisfies the state equation dXs = ϕs(Xs)ds + dWs over the interval

[t, T ] with initial condition Xt = x . Clearly satisfied when
▶ ϕ is bounded.
▶ ϕ ∈ Lq([0, T ]; Lp(Rd )

)
for some p ≥ 2, q > 2, d

p + 2
q < 1.

Theorem:

For each feedback function ϕ satisfying the above assumption, for each continuous flow
µ = (µt )0≤t≤T of probability measures on Rd , the adjoint PDE admits a unique solution in
the sense of viscosity. Uniqueness in the class of bounded continuous functions.



Regularity of the Co-State

A First A-Priori Bound.

∥ut∥∞ ≤
et

2

(
e2(T−t) − 1

)
∥f̃∥∞ +

e2T

2
Kϕ + eT∥g∥∞.

A Second A-Priori Bound. (using the fact that ũ is a solution of the adjoint PDE for a smooth ϕ̃

and a smooth running cost F̃ .)

∫ T

0

∫
Rd

|∇ũt (x)|2µt (dx)dt ≤ 4e4T∥F̃∥2
∞

(
1 +

3
2

T + ∥ϕ̃ − ϕ∥2
L2(µ)

)

Theorem:

If (ϕ,µ) ∈ A(2)(µ0) is such that ϕ is bounded, the viscosity solution of the adjoint equation
is a bounded continuous function on Rd whose first order derivatives in x ∈ Rd in the sense
of distributions are functions in L2([0, T ] × Rd ,µ) and L2

loc([0, T ] × Rd , dt dx).



A Form of Pontryagin Maximum Principle

Let
▶ ϕ = (ϕt )0≤t≤T be a bounded measurable feedback control function,

▶ µ = (µt )0≤t≤T be the corresponding solution of the FPK equation
▶ u the solution of the corresponding adjoint equation.

If β = (βt )0≤t≤T is another bounded measurable feedback control function, we have:

d
dϵ

J(ϕ + ϵβ)
∣∣∣
ϵ=0

=

∫ T

0
< βt (∇ut + ϕt ), µt > dt.

As a result, if ϕ is a critical point, then

ϕt (x) = −∇ut (x), µt − a.s. x ∈ Rd
, a.e. t ∈ [0, T ].



A Form of Pontryagin Maximum Principle

Let
▶ ϕ = (ϕt )0≤t≤T be a bounded measurable feedback control function,
▶ µ = (µt )0≤t≤T be the corresponding solution of the FPK equation

▶ u the solution of the corresponding adjoint equation.

If β = (βt )0≤t≤T is another bounded measurable feedback control function, we have:

d
dϵ

J(ϕ + ϵβ)
∣∣∣
ϵ=0

=

∫ T

0
< βt (∇ut + ϕt ), µt > dt.

As a result, if ϕ is a critical point, then

ϕt (x) = −∇ut (x), µt − a.s. x ∈ Rd
, a.e. t ∈ [0, T ].



A Form of Pontryagin Maximum Principle

Let
▶ ϕ = (ϕt )0≤t≤T be a bounded measurable feedback control function,
▶ µ = (µt )0≤t≤T be the corresponding solution of the FPK equation
▶ u the solution of the corresponding adjoint equation.

If β = (βt )0≤t≤T is another bounded measurable feedback control function, we have:

d
dϵ

J(ϕ + ϵβ)
∣∣∣
ϵ=0

=

∫ T

0
< βt (∇ut + ϕt ), µt > dt.

As a result, if ϕ is a critical point, then

ϕt (x) = −∇ut (x), µt − a.s. x ∈ Rd
, a.e. t ∈ [0, T ].



A Form of Pontryagin Maximum Principle

Let
▶ ϕ = (ϕt )0≤t≤T be a bounded measurable feedback control function,
▶ µ = (µt )0≤t≤T be the corresponding solution of the FPK equation
▶ u the solution of the corresponding adjoint equation.

If β = (βt )0≤t≤T is another bounded measurable feedback control function, we have:

d
dϵ

J(ϕ + ϵβ)
∣∣∣
ϵ=0

=

∫ T

0
< βt (∇ut + ϕt ), µt > dt.

As a result, if ϕ is a critical point, then

ϕt (x) = −∇ut (x), µt − a.s. x ∈ Rd
, a.e. t ∈ [0, T ].



A Form of Pontryagin Maximum Principle

Let
▶ ϕ = (ϕt )0≤t≤T be a bounded measurable feedback control function,
▶ µ = (µt )0≤t≤T be the corresponding solution of the FPK equation
▶ u the solution of the corresponding adjoint equation.

If β = (βt )0≤t≤T is another bounded measurable feedback control function, we have:

d
dϵ

J(ϕ + ϵβ)
∣∣∣
ϵ=0

=

∫ T

0
< βt (∇ut + ϕt ), µt > dt.

As a result, if ϕ is a critical point, then

ϕt (x) = −∇ut (x), µt − a.s. x ∈ Rd
, a.e. t ∈ [0, T ].



Characterization of the Optimum

The optimal control ϕt (x) = −∇ut (x) is obtained from the (unique) solution of the the forward
backward non-local PDE system:

{
∂tµ = 1

2∆xµ + divx (∇x u µ) − (V− < µ,V >)µ

0 = ∂t u + 1
2∆x u − 1

2 |∇x u|2 − (V− < µ,V >)u + V < µ, u > +f̃

on the support of µ.

Proposition:

For each continuous flow µ̂ = (µ̂t )0≤t≤T of probability measures on Rd , the second PDE (above)

admits a unique solution in the sense of viscosity which is continuously differentiable with uniformly

bounded first derivatives. Moreover, this solution is actually a classical solution when f̃ and g are

three times differentiable with bounded derivatives.



The Open Loop Problem

Mimicking Argument: Gyongi, Brunick-Shreve

Given

▶ α = (αt)0≤t≤T general adapted open loop control process
▶ corresponding state process X = (Xt)0≤t≤T satisfying dXt = αtdt + dWt

▶ additive functional At =
∫ t

0 V (Xs)ds

one can find

▶ a state process X̂ = (X̂t)0≤t≤T satisfying dX̂t = ψt(X̂t , Ât)dt + dŴt

▶ with additive functional Ât =
∫ t

0 V (X̂s)ds
▶ the deterministic (feedback) function ψt given by
ψt(x , a) = E[αt |Xt = x , At = a]

▶ (Xt ,At) has the same distribution as (X̂t , Ât), t ∈ [0,T ]



The Open Loop Optimization Problem

JV (α) =

∫ T

0

EP
[
f (Xt , αt )e−At

]
EP

[
e−At

] dt +
EP

[
g(XT )e−AT

]
EP

[
e−AT

]
=

∫ T

0

EP
[
EP[f (Xt , αt )|Xt ,At ]e−At

]
EP

[
e−At

] dt +
EP

[
g(XT )e−AT

]
EP

[
e−AT

]
≥

∫ T

0

EP
[
f (Xt ,E[αt |Xt ,At ])e−At

]
EP

[
e−At

] dt +
EP

[
g(XT )e−AT

]
EP

[
e−AT

]
by Jensen’s inequality

=

∫ T

0

EP̂
[
f (X̂t , ψt (X̂t , Ât ))e−Ât

]
EP̂

[
e−Ât

] dt +
EP̂

[
g(X̂T )e−ÂT

]
EP̂

[
e−ÂT

]
= JV (α̂),

with α̂t = ψt (X̂t , Ât ). Consequently:

inf
α

JV (α) = inf
ψ

∫ T

0

E
[
f
(
X̂t , ψt (X̂t , Ât )

)
e−Ât

]
E
[
e−Ât

] dt +
E
[
g(X̂T )e−ÂT

]
E
[
e−ÂT

] .

Value function over ALL open loop controls is the same as over
FEEDBACK functions of (Xt ,At)



A Second Deterministic Control Problem over Probabilities
Given αt = ψt (Xt ,At ) {

dXt = ψt (Xt ,At )dt + dWt

dAt = V (Xt )dt.

Corresponding cost JV (α) = J(2)(ψ)

J(2)(ψ) =

∫ T

0

E
[
f (Xt , ψt (Xt ,At ))e−At

]
E
[
e−At

] dt +
E
[
g(XT )e−AT

]
E
[
e−AT

]
=

∫ T

0

(∫
µt (dx, da)f (x, ψt (x, a))

)
dt +

∫
µT (dx, da)g(x)

where µt is the Gibbs probability measure:

µt (dx, da) =
E[δ(Xt ,At )(dx, da)e−At ]

E[e−At ]
, 0 ≤ t ≤ T .

FPK Equation

The measure valued function t 7→ µ
(1)
t satisfies the forward FPK equation:

∂tµ =
1
2
∆xµ− divx (ψtµ) − V∂aµ− (V− < µ,V >)µ,

in the sense of Schwartz distributions with µ0 = µ0(dx) ⊗ δ0(da) and

< µ,V >=

∫
Rd

∫
[0,T ]

V (x)µ(dx, da).

.
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The Corresponding Optimization Problem

Need to redo the entire analysis
▶ Existence of Optima
▶ Solution of the Adjoint PDE
▶ A priori bounds
▶ Regularity of co-states

The adjoint PDE is degenerate, approach via vanishing viscosity solutions

The Adjoint PDE and the Forward-Backward System

Rewriting FPK and the adjoint equations for the minimizer (still n the case of separable running
cost) PDE System

{
∂tµ = 1

2∆xµ + divx (∇x u µ) − V∂aµ− (V− < µ,V >)µ

0 = ∂t u + 1
2∆x u − 1

2 |∇x u|2 + V∂au − (V− < µ,V >)u + V < µ, u > +f̃ .



Summary

Comparison of the solutions of the conditional control problems

▶ close loop case (feedback functions of (t, x))

▶ αt = ϕt (Xt ), state µt (dx) = Ex0 [δXt (dx)e−At ]/Ex0 [e
−At ]

▶ general open loop case (feedback functions of (t, x, a) because of the mimicking result)

▶ αt = ψt (Xt ,At ), state µt (dx , da) = Ex0 [δ(Xt ,At )(dx , da)e−At ]/Ex0 [e
−At ]

Dynamics (FPK) + Adjoint Equation

Closed loop case PDE System (1){
∂tµ = 1

2∆µ + divx (∇x u µ) − (V− < µ,V >)µ

0 = ∂t u + 1
2∆x u − 1

2 |∇x u|2 − (V− < µ,V >)u + V < µ, u > +f̃ .

Open loop case (after mimicking) PDE System (2){
∂tµ = 1

2∆xµ + divx (∇x u µ) − V∂aµ− (V− < µ,V >)µ

0 = ∂t u + 1
2∆x u − 1

2 |∇x u|2 + V∂au − (V− < µ,V >)u + V < µ, u > +f̃ .

They are identical once we notice that u in (2) does not depend upon a, implying that the first
marginal of µ solves the FPK in (1) !



Equality of the Value Functions

Once we get to that point, simple consequence of Jensen’s inequality.

Samuel Daudin



Back to the Original Hard Killing Model

Main obstacle to the proof of the equality of the value functions.

No Mimicking Theorem Available



A New Mimicking Theorem
Let x0 ∈ D and let us assume that X = (Xt )0≤t≤T is an Itô process of the form

Xt = x0 +

∫ t

0
αs ds + Wt

where
▶ W = (Wt )0≤t≤T is a Wiener process
▶ α = (αt )0≤t≤T is a bounded progressively measurable process.

Then there exist
▶ a (deterministic) bounded measurable function α̃ : [0, T ] × Rd 7→ Rd

▶ a weak solution X̃ = (X̃t )0≤t≤T of the SDE

X̃t = x0 +

∫ t

0
α̃(s, X̃s) ds + W̃t

such that
▶ L(Xt | τ(X) > t) = L(X̃t | τ(X̃) > t) for all t ∈ [0, T ]

▶ and we may choose:
α̃(t, x) = 1D(x)E[αt | Xt∧τ(X) = x ].

Main Technical Tool
If b : [0,∞) × Rd ∋ (t, x) 7→ b(t, x) ∈ Rd is a bounded measurable function, the SDE

dXt = b(t,Xt )dt + 1D(Xt )dWt

is well posed (i.e. existence and uniqueness of a weak solution hold for every initial condition
x ∈ Rd )



Equality of the Value Functionsl

Jτ (α) =

∫ T

0

EP
[
f (Xt∧τ(X), αt )1τ(X)>t

]
EP[τ(X) > t]

dt +
EP[g(XT )1τ(X)>T ]

P[τ(X) > T ]

=

∫ T

0

EP
[
EP[f (Xt∧τ(X), αt )|Xt∧τ(X)]1τ(X)>t

]
EP[τ(X) > t]

dt +
EP

[
g(XT )1τ(X)>T

]
P[τ(X) > T ]

as 1τ(X)>t is measurable with respect to Xt∧τ(X)

Jτ (α) ≥
∫ T

0

EP
[
f
(

Xt∧τ(X),EP[αt |Xt∧τ(X)]
)

1τ(X)>t

]
P[τ(X) > t]

dt +
EP

[
g(XT )1τ(X)>T

]
P[τ(X) > T ]

convexity of f in the variable α, so

Jτ (α) ≥
∫ T

0

EP
[
f
(

Xt∧τ(X), α̃(t,Xt∧τ(X))1τ(X)>t

)]
P[τ(X) > t]

dt +
EP

[
g(XT 1τ(X)>T

]
P[τ(X) > T ]

=

∫ T

0

EP
[
f
(

Xt , α̃(t,Xt )1τ(X)>t )
]

P[τ(X) > t]
dt +

EP
[
g(XT 1τ(X)>T

]
P[τ(X) > T ]

=

∫ T

0
EP

[
f
(

Xt , α̃(t,Xt ) | τ(X) > t
]
dt + EP

[
g(XT ) | τ(X) > T

]
=

∫ T

0
EP̃

[
f
(

X̃t , α̃(t, X̃t ) | τ(X̃) > t
]
dt + EP

[
g(X̃T ) | τ(X̃) > T

]



What’s Next?

A Lot of Questions

▶ Minimization of

J(ϕ) =
∫ T

0
< f

(
· , ϕt (·)

)
, µt > dt + < g, µT >

for µt = L(Xt |τ > t)

▶ F-P-K equation

∂tµt =
1
2
∆µt − divx (ϕtµt ) + hϕ,µ0 (t)µt ,

where

▶ hϕ,µ0 (t) =
fϕ,µ0

(t)

1−Fϕ,µ0
(t) is the hazard rate of the hitting time τ

▶ Fϕ,µ0 (t) = P[τ ≤ t]
▶ fϕ,µ0 (t) is the density

▶ Adjoint equation ???

∂t u = −
1
2
∆x u − ϕt · ∇x u − hϕ,µ0 (t)u − f

(
·, ϕt (·)

)
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Pontriagin Maximum Principle if Hazard Rate Exists & is Bounded

▶ If β = (βt )0≤t≤T is another bounded measurable feedback control”

▶ d
dϵP[τ

ϕ+ϵβ > t]
∣∣∣
ϵ=0

= E
[
1
τϕ>t

∫ t
0 βs(X

ϕ
s )dWs

]
.

▶ d
dϵ hϕ+ϵβ,µ0 (t)

∣∣∣
ϵ=0

= −E
[∫ t

0 βr (X
ϕ
r )dWr |τϕ = t

]
fϕ,µ0 (t).

▶ λt = limϵ↘0
µ
ϕ+ϵβ
t −µϕt

ϵ exists as a mass 0 finite signed measure λt which satisfies

∂tλt =
1
2
∆λt − div(ϕtλt ) − div(βtµt ) + hϕ,µ0λt +

d
dϵ

hϕ+ϵβ,µ0 (t)
∣∣∣
ϵ=0
µt

▶ Gateaux derivative of the objective function ???

d
dϵ

J(ϕ + ϵβ)
∣∣∣
ϵ=0

=

∫ T

0
< βt (∇ut + ϕt ), µt > dt. presumably not

▶ if ϕ is a critical point, do we still have?

ϕt (x) = −∇ut (x), µt − a.s. x ∈ Rd
, a.e. t ∈ [0, T ]. presumably not



Pontriagin Maximum Principle if Hazard Rate Exists & is Bounded

▶ If β = (βt )0≤t≤T is another bounded measurable feedback control”

▶ d
dϵP[τ

ϕ+ϵβ > t]
∣∣∣
ϵ=0

= E
[
1
τϕ>t

∫ t
0 βs(X

ϕ
s )dWs

]
.

▶ d
dϵ hϕ+ϵβ,µ0 (t)

∣∣∣
ϵ=0

= −E
[∫ t

0 βr (X
ϕ
r )dWr |τϕ = t

]
fϕ,µ0 (t).

▶ λt = limϵ↘0
µ
ϕ+ϵβ
t −µϕt

ϵ exists as a mass 0 finite signed measure λt which satisfies

∂tλt =
1
2
∆λt − div(ϕtλt ) − div(βtµt ) + hϕ,µ0λt +

d
dϵ

hϕ+ϵβ,µ0 (t)
∣∣∣
ϵ=0
µt

▶ Gateaux derivative of the objective function ???

d
dϵ

J(ϕ + ϵβ)
∣∣∣
ϵ=0

=

∫ T

0
< βt (∇ut + ϕt ), µt > dt. presumably not

▶ if ϕ is a critical point, do we still have?

ϕt (x) = −∇ut (x), µt − a.s. x ∈ Rd
, a.e. t ∈ [0, T ]. presumably not



Pontriagin Maximum Principle if Hazard Rate Exists & is Bounded

▶ If β = (βt )0≤t≤T is another bounded measurable feedback control”

▶ d
dϵP[τ

ϕ+ϵβ > t]
∣∣∣
ϵ=0

= E
[
1
τϕ>t

∫ t
0 βs(X

ϕ
s )dWs

]
.

▶ d
dϵ hϕ+ϵβ,µ0 (t)

∣∣∣
ϵ=0

= −E
[∫ t

0 βr (X
ϕ
r )dWr |τϕ = t

]
fϕ,µ0 (t).

▶ λt = limϵ↘0
µ
ϕ+ϵβ
t −µϕt

ϵ exists as a mass 0 finite signed measure λt which satisfies

∂tλt =
1
2
∆λt − div(ϕtλt ) − div(βtµt ) + hϕ,µ0λt +

d
dϵ

hϕ+ϵβ,µ0 (t)
∣∣∣
ϵ=0
µt

▶ Gateaux derivative of the objective function ???

d
dϵ

J(ϕ + ϵβ)
∣∣∣
ϵ=0

=

∫ T

0
< βt (∇ut + ϕt ), µt > dt. presumably not

▶ if ϕ is a critical point, do we still have?

ϕt (x) = −∇ut (x), µt − a.s. x ∈ Rd
, a.e. t ∈ [0, T ]. presumably not



Pontriagin Maximum Principle if Hazard Rate Exists & is Bounded

▶ If β = (βt )0≤t≤T is another bounded measurable feedback control”

▶ d
dϵP[τ

ϕ+ϵβ > t]
∣∣∣
ϵ=0

= E
[
1
τϕ>t

∫ t
0 βs(X

ϕ
s )dWs

]
.

▶ d
dϵ hϕ+ϵβ,µ0 (t)

∣∣∣
ϵ=0

= −E
[∫ t

0 βr (X
ϕ
r )dWr |τϕ = t

]
fϕ,µ0 (t).

▶ λt = limϵ↘0
µ
ϕ+ϵβ
t −µϕt

ϵ exists as a mass 0 finite signed measure λt which satisfies

∂tλt =
1
2
∆λt − div(ϕtλt ) − div(βtµt ) + hϕ,µ0λt +

d
dϵ

hϕ+ϵβ,µ0 (t)
∣∣∣
ϵ=0
µt

▶ Gateaux derivative of the objective function ???

d
dϵ

J(ϕ + ϵβ)
∣∣∣
ϵ=0

=

∫ T

0
< βt (∇ut + ϕt ), µt > dt. presumably not

▶ if ϕ is a critical point, do we still have?

ϕt (x) = −∇ut (x), µt − a.s. x ∈ Rd
, a.e. t ∈ [0, T ]. presumably not



Pontriagin Maximum Principle if Hazard Rate Exists & is Bounded

▶ If β = (βt )0≤t≤T is another bounded measurable feedback control”

▶ d
dϵP[τ

ϕ+ϵβ > t]
∣∣∣
ϵ=0

= E
[
1
τϕ>t

∫ t
0 βs(X

ϕ
s )dWs

]
.

▶ d
dϵ hϕ+ϵβ,µ0 (t)

∣∣∣
ϵ=0

= −E
[∫ t

0 βr (X
ϕ
r )dWr |τϕ = t

]
fϕ,µ0 (t).

▶ λt = limϵ↘0
µ
ϕ+ϵβ
t −µϕt

ϵ exists as a mass 0 finite signed measure λt which satisfies

∂tλt =
1
2
∆λt − div(ϕtλt ) − div(βtµt ) + hϕ,µ0λt +

d
dϵ

hϕ+ϵβ,µ0 (t)
∣∣∣
ϵ=0
µt

▶ Gateaux derivative of the objective function ???

d
dϵ

J(ϕ + ϵβ)
∣∣∣
ϵ=0

=

∫ T

0
< βt (∇ut + ϕt ), µt > dt. presumably not

▶ if ϕ is a critical point, do we still have?

ϕt (x) = −∇ut (x), µt − a.s. x ∈ Rd
, a.e. t ∈ [0, T ]. presumably not


