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Abstract. A mathematical knot is a simple closed curve in 3-space. We model circular DNA as a knot to

predict and classify the possible knotted products which can arise as a result of site-specific recombination.
We are particularly interested in DNA substrates of the form T (2, n)#C(2, r). We show that, given some

reasonable biological assumptions, all of the possible products are contained in one of two families.

1. Introduction

Circular DNA is a double-helix DNA molecule that forms a closed loop so that it has no free ends. It
is found in bacterial chromosomes, mitochondria, and chloroplasts, and it is used by scientists in molecular
biology and genome engineering experiments. In this paper we model the central axis of a molecule of
circular DNA as a mathematical knot. A knot is a simple, closed curve in 3-space; simple meaning non-
self-intersecting and closed meaning having its two loose ends glued together. Closely related to a knot is
something called a link, or a collection of knots with mutual entanglements.

Figure 1. Circular DNA
Image: https://en.wikipedia.org/wiki/Topoisomer

Figure 2. DNA as a knot
Image: https://julianpark.me/posts/topology

Site-specific recombination is a naturally-occurring biological process that alters the structure of a DNA
molecule. In this process, two recombinase enzymes attach to a DNA substrate at two different sites and
bring them close together. We refer to this region of space where the sites and enzymes interact as the
recombinase complex. The sites are then cleaved, exchanged, and resealed in a way that is determined by
which recombinase subfamily - serine or tyrosine - our enzyme belongs to. We refer to the post-recombinant
DNA as the product.

The underlying mechanism of this process is not well understood [FGL+13]. To solve this problem, the
molecular biologists let the enzymes act on a circular DNA substrate [FGL+13]. The product then, a knotted
or linked strand of circular DNA, is used to deduce the underlying mechanism which could have caused the
knot or link [BV11]. (If the DNA were to have loose ends, one could simply unwind it post-recombination
losing all of the relevant information about the underlying reaction.)

The ability to identify and categorize these possible knotted and linked products would help the biologist’s
understanding of the underlying reaction [BF07,FGL+13]. This is precisely the aim of this paper. Current
methods for doing this, such as electron microscopy and gel electrophoresis, have proven to be difficult
[FGL+13]. Instead, we develop a topological model similar to that seen in [FGL+13,BF07,BV11]. We take
a certain set of biologically reasonable assumptions and formulate them in a mathematically precise way so
that we can deduce such products given the configuration of our initial substrate.

Specifically we are interested in the case where our substrate is represented by a knot of the form
T (2, n)#C(2, r); that is, the connected sum of a torus knot T (2, n) and a twist knot C(2, r). The con-
nected sum operation # takes in two knots and outputs a single one; it can be thought of as “knot addition.”
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In general the operation is not well-defined, meaning that the output for a given input is not necessarily
unique. Since T (2, n) and C(2, r) are both invertible, however, we do not have a problem [Ada94]. The
connected sum T (2, n)#C(2, r) is indeed well-defined, as are both K1#T (2, n) and K1#C(2, r) for some
arbitrary knot K1. We denote some integer number of crossings by an ellipsis.

n r n r

T (2, n) C(2, r) T (2, n)#C(2, r)

Figure 3. Substrates of interest

Previous work has been done on simpler substrates. [BF07] determined the knotted and linked products
of site-specific recombination on unknotted, unlinked, and T (2, n) substrates, [BV11] on C(2, r) substrates,
and [FGL+13] on T (2, n)#T (2,m) substrates. We choose to focus on T (2, n)#C(2, r) substrates since these
are one of the the next most trivial products. It only takes two rounds of recombination on an unknotted
substrate to get to a product of the form T (2, n)#C(2, r).

Throughout the paper we will refer to the knot representing our DNA substrate as J , and the two
recombination sites as α1 and α2, which are two small arcs living on J . Further, we will model the recombinase
complex as a topological ball B ⊂ R3.

Figure 4. An example of site-specific recombination
Image: [BV11]

Before we derive the possible knotted and linked products, we lay out some mathematical assumptions
based on what is experimentally observed to occur [BF07]. The first assumption is about the “niceness”
of the recombinase complex, the second assumption is about the “niceness” of the substrate outside of the
recombinase complex, and the third assumption is about how the recombinase enzyme alters the substrate
within the recombinase complex.

2. Assumptions

Let B be a ball such that B ∩ J = α1 ∪ α2.

Definition 1. A projection is the image of a mapping P : R3 7→ R2 such that P 2 = P .

Remark. Intuitively, a projection is a 2-dimensional shadow cast by a 3-dimensional object.

Assumption 1. There is a projection P0 of B ∩ J such that α1 and α2 do not cross and neither α1 nor α2

self-cross.

The following elaborates on an idea considered in [FGL+13]. Let R be a surface in R3 such that ∂R = J ,
and let S be a thrice-punctured planar surface in R2 ⊂ R3 decorated with finitely many arcs whose boundaries
lie in the boundary of S (see Figure 6). We denote an arbitrary number of parallel arcs grouped together by
an ellipsis.
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Figure 5. An example of B ∪ J satisfying Assumption 1

Caution. These decorating arcs are different from the arcs α1 and α2 we use to represent the two recombi-
nation sites.

Remark. We could annotate each decorating arc with a − or + sign to denote the direction of the twisting.
In particular, the two arcs representing the clasp on the C(2, r) component must both be of the same sign.
However, for sake of simplicity in our drawings, we generally omit this information.

We view S in the projection P , which can be thought of as what is seen in the plane of this page.

Definition 2 ( [FGL+13]). We say that R is represented by S when R can be obtained from S by replacing
each of the decorating arcs in S by a half-twisted band contained in the neighborhood of the arc.

± ±

R

Figure 6. The decorated planar S represents the surface R

Definition 3. For two knots K1,K2, an ambient isotopy from K1 to K2 is a mapping which continuously,
and without cutting or self-intersecting, deforms K1 into K2.

Assumption 2. There is an ambient isotopy, pointwise fixing B, from J to the boundary of a surface R
which can be represented by S.

We now isotope J accordingly and continue to view S in the projection P .

Remark. Since P and P0 may be different, it is possible that α1 and α2 admit a single crossing in the
projection P while maintaining zero crossings in the projection P0. The following figure illustrates the
possible forms that B ∩ J can take in the projection P .

B1 B2 B3 B4

Figure 7. Pre-recombinant B ∩ J in the projection P

Remark. B1 and B2 are prima-facie equivalent by a 90◦ rotation, as are B3 and B4. We list them separately
for the following reason: If we think of P as what is seen on this page, we are implicitly choosing an orientation
by which we look at the page, and thus lose the rotational symmetry.

Without loss of generality we henceforth conflate R and S. We refer to “B interacting with R” as “B
interacting with S” in order to make the proof more straightforward.
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Assumption 3. Site-specific recombination only affects the substrate J inside of the recombinase complex
B. In particular,

(1) After |k| rounds of processive recombination, a serine recombinase adds a row of k identical crossings
between α1 and α2.

(2) A tyrosine recombinase replaces α1 and α2 with arcs that cross at most twice.

k

k ± 1

k

k ± 1

|n| ≤ 2

|n| ≤ 2

Figure 8. Post-recombinant forms of B ∩ J in the projection P , as mediated by serine
(left) and tyrosine (right)

3. Lemmas

Lemma 1. B ∩ S is either a (possibly twisted) strip or two disjoint disks.

Two disks Non-twisted strip Once-twisted strip

Figure 9. The different forms that B ∩ S can take, up to rotation

Proof. If pre-recombinant B ∩ J is of the form B1 or B2, then B ∩ S can be a strip or two disks, depending
on how one chooses to shade it. If pre-recombinant B ∩ J is of the form B3 or B4, then B ∩ S can only be
a once-twisted strip. �

Remark. When we enumerate all possible configurations of B ∪ S, we assume (unless otherwise specified)
that in all cases where B ∩ S is a strip, the strip may be once-twisted. Doing so allows us to restrict the
number of drawings to a minimum without loss of generality.

Definition 4. A decorating arc separates B ∪ S if cutting along it divides B ∪ S into two disjoint pieces.

B B

Figure 10. Two decorating arcs which each separate B ∪ S (left) and two decorating arcs
which together separate B ∪ S (right)
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Lemma 2 ( [FGL+13]). No decorating arc on S −B separates B ∪ S.

Lemma 3 ( [FGL+13]). Any two decorating arcs on S−B which together separate B∪S belongs to a single
group of parallel arcs.

Remark. We utilize Lemmas 2 and 3 to make our drawings simpler.

4. Main Proof Strategy

For the remainder of the paper we will assume that our substrate and enzyme satisfy Assumptions 1, 2,
and 3. To determine all possible products, we enumerate all possible ways that the ball B can interact with
the surface S without violating any of the assumptions. Doing so will provide a list of “legal” configurations
of B ∪ J from which we can then apply Assumption 3 to obtain the desired result.

To help us enumerate, we break up the possible configurations into three exhaustive cases. Case 1 covers
when α1 and α2 are both on the T (2, n) component, Case 2 covers when α1 and α2 are both on the C(2, r)
component, and Case 3 covers when one of α1 and α2 is on the T (2, n) component and the other is on the
C(2, r) component. Each case can be further broken down into two exhaustive sub-cases, depending upon
whether B ∩ S is a (possibly twisted) strip or a set of two disjoint disks. We implicitly invoke Lemmas 2
and 3 so that our drawings can be as simple as possible.

Once we enumerate these, we isotope out duplicates by applying moves M1, M2, and M3. This ultimately
provides us with a minimal set of configurations with maximal predictive power, from which we are free to
apply Assumption 3 to determine the post-recombinant form of our substrate.

a

b

a + b

a + b

b± 1b

a a± 1

or

a even a odd

a

b

a+ b a+ b

Figure 11. Move 1 (M1), Move 2 (M2), and Move 3 (M3)



6 JORDAN KATZ

Remark. M1 can be visualized by rotating the ball (used to represent B) by multiples of π around the vertical
axis of the figure. M2 can be visualized by “lifting” the box and attached strand out of the page and then
swinging in front of the rest of the figure (or equivalently by “pushing” the box and attached strand into
the page and then swinging it behind the rest of the figure), while keeping the rest of the figure glued to the
page. M3 can be visualized by rotating the box by multiples of π around the vertical axis of the figure.

5. Dividing into cases

Here we consider three cases depending upon the locations of α1 and α2 in ∂S. For each of the cases,
we use a combinatorial argument by considering all possible locations for α1 and α2 except for those which
violate Assumption 2. We number sections of ∂S to make this easier. By “14,” for example, we mean the
instance where α1 or α2 lives in 1 ⊂ ∂S and the other lives in 4 ⊂ ∂S. When α1 or α2 lives in an ellipsis
section, we break up the ellipsis into two sets of ellipses and place α1 or α2 between them, as illustrated
below.

a+ b a b

Figure 12. What it means for α1 or α2 to live in an ellipsis section

After this enumeration, we eliminate isotopically equivalent instances using our three moves, or instances
which are limiting cases of others. Limiting cases can only occur when one of α1 and α2 lives in an ellipsis
section. By limiting case, we mean a case where a or b (as in the figure above) evaluates to 0. For example,
in Case 1 when B ∩ S is two disks, 13 is a limiting case of 12. All information about 13 is contained in
that about 12, which is why it is safe to eliminate. In Case 2, some instances are repeated to make the
logic consistent despite them already being covered in Case 1. Additionally, some Case 2 instances can be
eliminated by continuously sliding (via isotopy) α1 or α2 out of the clasp, as in, for example, 44.

Theorem 1. All possible forms that B ∪ J can take pre-recombination are illustrated below:

B #C(2, r)

B = B2, B3, B4 B = B1, B3, B4

#C(2, r)
B

#C(2, r)

B

B = B2

#T (2, n)

B

B = B1, B3, B4

±2

#T (2, n)

B

B = B2

±2

B

B = B1

±2

0

B

B = B3, B4

±2

±1

depending on + or -

B B = B1

±2

Proof. We break B ∪ S into cases.
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Case 1: α1 and α2 are both on the T (2, n) component.

2

1

3

4

5

Subcase 1.1: B∩S is a strip. The only pos-
sible configurations which don’t violate As-
sumption 2 are 11, 13, 14, 22, 25, 33, 34,
44, and 55. We can simplify this list fur-
ther: 33 is a limiting case of 22. We can
apply M1 to isotope 25 and 34 to 14. We
can apply M2 to isotope 55 to 22. We can
apply M3 to isotope 22 to either 11 or 14.
This leaves us with 11, 13, 14, and 44 as
illustrated below.

B #C(2, r)

B = B2, B3, B4

B #C(2, r)

B = B2, B3, B4

B = B1, B3, B4

#C(2, r)
B

B #C(2, r)

B = B2, B3, B4

Subcase 1.2: B ∩ S is two disks. The only
possible configurations which don’t violate
Assumption 2 are 11, 12, 13, 22, 23, 33, 44,
45, and 55. We can simplify this list further:
11 and 13 are limiting cases of 12. 33 is a
limiting case of 23. 44 is a limiting case of
45. We can apply M2 to isotope 55 to 22.
We can apply M3 to isotope both 22 and 23
to either 12 or 45. This leaves us with 12
and 45 as illustrated below.

#C(2, r)

B

B = B2

#C(2, r)

B

B = B2
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Case 2: α1 and α2 are both on the C(2, r) component.

1

2

3

4

5

6

7

8

9

Subcase 2.1: B∩S is a strip. The only pos-
sible configurations which don’t violate As-
sumption 2 are 11, 14, 17, 22, 25, 33, 36, 44,
47, 55, 66, 77, 88, and 99. We can simplify
this list further: 11, 17, and 77 are already
covered in Case 1. 33 is a limiting case of
22. We can apply M1 to isotope 25, 36, and
47 to 14. We can apply M2 to isotope 55 to
22. We can apply M3 to isotope 22 to either
11 or 44. We can isotope both 44 and 99 to
77, and both 66 and 88 to 33, by continu-
ously moving both α1 and α2 through the
clasp. This leaves us with 14 as illustrated
below.

#T (2, n)

B

B = B1, B3, B4

±2

Subcase 2.2: B ∩ S is two disks. Any arc
living in 8 or 9 can be continuously moved
through the clasp to 3 or 7 respectively, so
we don’t list them. (More justification for
this in [BV11].) Then, the only possible
configurations which don’t violate Assump-
tion 2 are 11, 12, 13, 17, 22, 23, 27, 33,
37, 77, 44, 45, 46, 55, 56, and 66. We can
simplify this list further: 11, 17, and 77 are
already covered in Case 1. 13 is a limiting
case of 12. 33 is a limiting case of 23. 37 is
a limiting case of 27. 46 is a limiting case
of 45. We can apply M2 to isotope 55 to
22. We can apply M3 to isotope 22 to ei-
ther 11 or 44, and both 23 and 56 to either
12 or 45. We can isotope 44 to 77 and 66
to 33 by continuously moving both α1 and
α2 through the clasp. This leaves us with
12, 27, and 45 as illustrated below.

#T (2, n)

B

B = B2

±2

#T (2, n)

B

B = B2

±2

#T (2, n)

B

B = B2

±2
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Case 3: One of α1 and α2 is on the T (2, n) component and the other is on the C(2, r) component.

1 2

3 4

Remark. We only annotate sections 1, 2, 3, and 4 for sake of simplicity. Any instances where α1 or α2 lives
in one of the non-annotated sections have been covered in previous cases or violate Assumption 2.

Subcase 3.1: B∩S is a strip. 34 is the only
option, as illustrated below. Any other
choice for α1 or α2 would either violate
Assumption 2 or would have been covered
in one of the previous two cases.

B

B = B1

±2

0

±

∓

B

B = B3, B4

±2

±1

depending on + or -

Subcase 3.2: B ∩ S is two disks. 12 is the
only option, as illustrated below. Any
other choice for α1 or α2 would either
violate Assumption 2, be a limiting case of
12, or would have been covered in one of
the previous two cases.

B B = B1

±2

�
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6. Main Results

Theorem 2 (Serine). All knotted and linked products that can arise as a result of site-specific recombination
mediated by a serine recombinase on a substrate of the form T (2, n)#C(2, r) fall into one of the two boxed
families illustrated below.

Proof. We apply Assumption 3 (see Figure 8) to our list of legal configurations for pre-recombinant B ∪ J
determined in Theorem 1. Depending upon what forms pre-recombinant B∩J can take (B1, B2, B3, B4) we
fill in the appropriate post-recombinant form. The arrows denote isotopies. Every knotted or linked product
not boxed can be isotoped to one of the two boxed families.

#C(2, r)

#C(2, r)

±2

0

±2

±1

±2

±1

±2

±1

±1

#C(2, r)0 ±1

#C(2, r)0

±1

#T (2, n)

±2

#T (2, n)

±2

#T (2, n)

±2

#T (2, n)

±2±1

#T (2, 1)

±2

±1

#C(2, r)

#C(2, r)

#C(2, r)

#C(2, r)

#C(2, r)

±2

±2

0 ±1

±10

0

0

±1

#T (2, 1)

±2

±1

#T (2, 1)

±2

�
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Theorem 3 (Tyrosine). All knotted and linked products that can arise as a result of site-specific recombina-
tion mediated by a tyrosine recombinase on a substrate of the form T (2, n)#C(2, r) fall into one of the two
boxed families illustrated above.

Proof. We use the exact same reasoning as in the proof of Theorem 1. The difference is in how we apply
Assumption 3 to our list of legal configurations for pre-recombinant B ∪ J . In particular, Assumption 3 for
tyrosine treats all pre-recombinant B ∩ J (B1, B2, B3, B4) as equivalent. �

Remark. The possible products from a tyrosine recombination will have more restrictions on the number of
crossings for certain ellipsis sections due to Assumption 3 for tyrosine.
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