
Algebraic Topology QR Exam – May 2024

1. Let f : X →Y be a map of topological spaces, and let x0 ∈ X . Show that, if f is a homotopy equivalence,
then the induced map f∗ : π1(X ,x0)→ π1(Y, f (x0)) is an isomorphism.
(Do not assume its homotopy inverse, or the associated homotopies, respect basepoints).

2. (a) State the definition of a CW complex, and its topology (the weak topology).

(b) Let p : X̃ → X be a degree-d covering map. If X is a CW complex, then its cover X̃ naturally inherits
a CW complex structure. Construct the attaching maps and characteristic maps for this CW complex
structure, and verify that your construction defines a cellular decomposition of X̃ . Give complete
statements of any properties of covering spaces you use. You do not need to check that the topology
of X̃ agrees with the weak topology with respect to your cell structure. Do, however, verify that X̃
has d many n-cells for each n-cell of X , and that p restricts to a homeomorphism from each (open)
n-cell of X̃ to an (open) n-cell of X .

3. Let F5 be the free group on 5 letters. Prove that every finite-index subgroup of F5 is a free group with
rank congruent to 1 mod 4, and conversely that every free group of rank m ≥ 5 congruent to 1 mod 4
occurs as a finite-index subgroup of F5.

4. Let X be the quotient space defined as the union of the polygons below, modulo the given edge identifi-
cations.

(a) Compute the homology of X .

(b) Let B ⊆ X be the image of the loop b. Prove that B is not a retract of X .

5. Let Y ∼= Sn be a smooth n-sphere, and let X ⊆ Y be a smoothly embedded d-sphere, for some 0 ≤ d < n.

(a) Show that the inclusion ι : X → Y is nullhomotopic.

(b) Compute the reduced homology groups of the quotient space Y/X .
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Solutions
1. See (for example) the proofs of Hatcher Propositions 1.5 and 1.18.

2. (a) There are multiple standard ways to define a CW complex. Here is one (following Hatcher):
A CW complex is a (filtered) topological space X defined inductively as follows. Its 0-skeleton
X (0) is a discrete set of points. For each n, the n-skeleton X (n) is built from the (n− 1)-skeleton
by gluing a set of closed n-disks {Dn

α}α along their boundaries via continuous attaching maps
φα : ∂Dn

α → X (n−1), as follows. We define X (n) to be the quotient of

X (n−1)
⊔
α

Dn
α

via the equivalence relation that identifies a point in X (n−1) with all points in its preimages under
φα for all α . We let X =

⋃
n≥0 X (n).

We endow X with the weak topology: a subset U ⊆ X is open in X if and only if U ∩X (n) is open
in X (n) (with its inductively defined quotient topology) for every n.
An (open) cell of X is the image en

α of int(Dn
α) for some n,α . It follows from the continuity of the

attaching maps that the open cells are embedded in X . The characteristic map Φn
β

of a cell en
β

is
the composite

Φ
n
β

: Dn
β

↪→ X (n−1)
⊔
α

Dn
α −→ X (n) −→ X .

(b) We will construct the CW complex structure on X̃ inductively by skeleta, in such a way that the
k-skeleton of X̃ is p−1

(
X (k)

)
.

Let the 0-skeleton be p−1
(

X (0)
)

. Since X (0) is discrete and p is a local homeomorphism, this
preimage is discrete.
Suppose by induction that we have constructed a (k − 1)-dimension CW complex structure on
p−1

(
X (k−1)

)
⊆ X̃ . Let Φk

α : Dk
α →X be the characteristic map of a k-cell of X . Recall the following

results on the existence and uniqueness of lifts of maps from X to X̃ .

Theorem (Existence of lifts). Suppose p : (X̃ , x̃0)→ (X ,x0) is a covering space map and
suppose f : (Y,y0)→ (X ,x0) is a map from a path-connected and locally path-connected
space Y . Then a lift f̃ : (Y,y0) → (X̃ , x̃0) of f exists if and only if f∗(π1(Y,y0)) ⊆
p∗(π1(X̃ , x̃0)).

Theorem (Uniqueness of lifts). Suppose p : X̃ →X is a covering space map and f :Y →X
is a map from a connected space Y . If two lifts f̃1, f̃2 : Y → X̃ of f agree at one point of
Y , then f̃1 and f̃2 agree on all of Y .

Choose a basepoint y0 ∈Dk
α . Since the disk Dk

α is a contractible manifold—in particular, it is locally path-
connected and simply connected—the Existence Theorem implies that there exists a lift Φ̃k

α : Dk
α → X̃ for

each p-preimage of Φk
α(y0). We claim that these d lifts Φ̃k

α define the characteristic maps for the k-cells
of a CW structure on X̃ . The attaching maps are the restrictions of the lifts Φ̃k

α to ∂Dk
α ; by construction

their image is contained in

p−1
(

Φ
k
α

(
∂Dk

α

))
⊆ p−1

(
X (k−1)

)
= X̃ (k−1).

We must verify that every point in X̃ lies in precisely one open cell, and that the characteristic maps Φ̃k
α

restrict to homeomorphisms on int(Dk
α). Let x̃ ∈ X̃ . Then p(x̃) is contained in precisely one open cell
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en
α of X . Let Φn

α : Dk
α → X be the associated characteristic map, and y0 ∈ Dk

α the chosen basepoint. Let
y ∈ int(Dn

α) be the unique preimage of p(x̃). To show that x̃ lies in a unique open cell, it is necessary
and sufficient to show that precisely one of our d lifts of Φn

α maps y to x̃. By the Existence Theorem,
there is a lift Φ̃n

α mapping y to x̃. By the Uniqueness Theorem, this lift is unique, and coincides with the
unique lift constructed above that maps the basepoint y0 ∈ Dk

α to its preimage point Φ̃n
α(y0) ∈ X̃ . Thus x̃

is contained in a unique open cell of X̃ .

Finally, observe that for each n,α and lift Φ̃n
α , the composite

Φ
n
α

∣∣∣
int(Dn

α )
= p◦ Φ̃

n
α

∣∣∣
int(Dn

α )
: int(Dn

α)
Φ̃n

α−→ X̃
p−→ X

is a homeomorphism onto its image. This implies that both the restriction of Φ̃n
α to int(Dn

α) and the
restriction of p to Φ̃n

α(int(Dn
α)) must be injective. Moreover, both restrictions must be homeomorphisms

onto their image (neither map can make the topology coarser). This concludes the construction of the
CW complex structure on X̃ , and establishes that p restricts to a homeomorphism on any open n-cell of
X̃ to an open n-cell of X .

Per the question statement, we will not verify that the topology on X̃ agrees with the weak topology for
this cell structure. See (for example) Hatcher Proposition A.2 for point-set conditions that ensure that a
family of maps to a space X̃ are the characteristics maps for a CW complex structure on X̃ .

3. We can identify F5 with the fundamental group of the wedge X = S1 ∨S1 ∨S1 ∨S1 ∨S1. The space X is
path-connected, and since it is a graph (a 1-dimensional CW complex) it is locally path-connected and
semi-locally simply-connected. Hence the classification of covering spaces implies that each subgroup G
of F5 is isomorphic to the fundamental group of a path-connected cover of X . The index of the subgroup
equals the number of sheets of the cover, so the finite-index subgroups G of F5 correspond exactly to
finite-sheeted covers of X .

Let X̃ → X be a d-sheeted cover of X . By Problem 2, a cover X̃ of a graph X is itself a graph, and since
X has 1 vertex and 5 edges, the cover X̃ has d vertices and 5d edges. A spanning tree in X̃ will contain
all d vertices, and (d −1) edges. Because the spanning tree is a contractible CW subcomplex of X̃ , the
space X̃ is homotopy equivalent to its quotient by the spanning tree. This quotient is a wedge of

5d − (d −1) = 4d +1

circles. Thus π1(X̃) is a free group of rank 4d+1. This rank is always congruent to 1 mod 4, as claimed.

To complete the problem, we must show that X has a d–sheeted cover for every d ≥ 1. The identity map
X → X is a one-sheeted cover. For d > 1, consider a surjective homomorphism φd from F5 to the cyclic
group Cd of order d (say, a map sending all five free generators of F5 to a distinguished generator of
Cd .) Then the kernel G of φd is an index-d subgroup, and so corresponds to a d-sheeted cover, and we
conclude that G ∼= F4d+1.

4. (a) When we trace through the identifications of the vertices induced by the identifications of the edges,
we see that all the vertices of all the polygons are identified to a single point v. Thus the space X has
a CW complex structure with 0-skeleton a single vertex v, 1-skeleton a wedge of three circles a,b,c,
and three 2-cells we’ll call A,B,C. The 2-cell A is glued along its boundary via the word a4b−1, the
2-cell B is glued along the word a2c−1, and the 2-cell C is glued along the word c2b−1.
We therefore obtain the cellular chain complex
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0 C2(X) C1(X) C0(X) 0

Z{A,B,C} Z{a,b,c} Z{v}

A 4a−b

B 2a− c

C 2c−b

a v− v = 0

b v− v = 0

c v− v = 0

∂2 ∂1

Explicitly,

∂2 =

 4 2 0
−1 0 −1
0 −1 2

 and ∂1 = 0.

By direct calculation (say, writing ∂2 in RREF) we see that the kernel of ∂2 is the rank-1 subgroup
spanned by −A+2B+C. Thus,

H0(X) =
C0(X)

im(∂1)
=

Z{v}
⟨0⟩

∼= Z

H1(X) =
ker(∂1)

im(∂2)
=

Z{a,b,c}
⟨4a−b,2a− c,2c−b⟩

∼= Z

H2(X) = ker(∂2) = ⟨−A+2B+C⟩ ∼= Z

In the calculation of H1, we note that the matrix ∂2 has rank 2 and image spanned by 4a− b and
2a− c. Thus, H1(X) is the infinite cyclic group generated by the class of cycle a. The cycle b is
homologous to 4a and the cycle c is homologous to 2a.

(b) We will use the calculation of H1(X) to show that B is not a retract of X . Suppose for the sake
of contradiction that it is. By definition, this means that there exists a retraction, a map r : X → B
satisfying r ◦ ι = idB, where ι : B ↪→ X is the inclusion of B.
By functoriality of H1, this implies that r∗◦ι∗ = idH1(B). Now, B is a circle, with H1(B)∼=Z generated
by the loop b. The inclusion ι : B → X induces on H1 the inclusion of the subgroup generated by b,
i.e., the inclusion of the subgroup 4Z⊆ Z∼= H1(X). We have a commuting diagram,

H1(B) H1(X) H1(B)

⟨b⟩ ⟨a⟩ ⟨b⟩

b b = 4a

a r∗(a)

ι∗

id

r∗ Z Z Z

1 4

1 ?

4

1

?
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The crux of our contradiction is that the inclusion 4Z ↪→ Z does not have a left inverse r∗. To see
this, we consider the possibilities for the element r∗(a). We know

r∗(ι∗(b)) = id(b) = b

r∗(4a) = b

4r∗(a) = b

But there is no element x in H1(B) = ⟨b⟩ satisfying 4x = b. We conclude that the retraction map r
cannot exist, and B is not a retract of X .

5. (a) Let f : Sd → Sn be any continuous map. There exist CW complex structures on Sd (respectively, Sn)
with one 0-cell and one d-cell (respectively, one 0-cell and one n-cell). By the cellular approximation
theorem, the map f : Sd → Sn is homotopic to a cellular map g. But then g maps the d-skeleton of
Sd (which is all of Sd) to the d-skeleton of Sn (which, since d < n, is a point). Hence g is a constant
map, and we conclude that an arbitrary continuous map f : Sd → Sn is nullhomotopic.

(b) The sphere Sp has reduced homology

H̃i(Sp)∼=
{

Z, i = p
0, i ̸= p.

Since X ⊆Y is a smooth submanifold, the pair (Y,X) is a good pair; this follows (for example) from
the tubular neighbourhood theorem. Thus H̃i(X/Y )∼=H(Y,X), and we apply the long exact sequence
of a pair

· · · H̃i(Sd) H̃i(Sn) H̃i(Y/X) H̃i−1(Sd) H̃i−1(Sn) · · ·ι∗ ι∗

By part (a), the map ι is nullhomotopic, hence ι∗ = 0, and the long exact sequence decomposes into
a sequence of short exact sequences

0 H̃i(Sn) H̃i(Y/X) H̃i−1(Sd) 0

Thus if d < n−1, we find

H̃i(Y/X)∼=

 Z, i = n
Z, i = d +1
0, otherwise.

If d = n− 1, then the nonzero reduced homology groups of Y/X are determined by the short exact
sequence

0 Z H̃n(Y/X) Z 0

We will use the short exact sequence to prove that H̃n(Y/X) ∼= Z2. This follows directly from the
observation that the quotient group of the short exact sequence is free abelian, hence the short exact
sequence must split. We also outline an argument to check this isomorphism by hand: Because
H̃n(Y/X) is an extension of finitely generated abelian groups, it is itself a finitely generated abelian
group, and so is determined by its rank and torsion subgroup. The torsion subgroup must be in the
kernel of the surjective map, hence by exactness is zero. The rank-nullity theorem implies that the
rank of H̃n(Y/X) is 2.
We conclude, when d = n−1, that

H̃i(Y/X)∼=
{

Z2, i = n
0, otherwise.

Remark: For an alternate proof, see Hatcher Example 0.14 to argue that Y/X ≃ Sn ∨Sd+1.
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