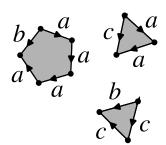
Algebraic Topology QR Exam – May 2024

- Let f: X → Y be a map of topological spaces, and let x₀ ∈ X. Show that, if f is a homotopy equivalence, then the induced map f_{*}: π₁(X,x₀) → π₁(Y, f(x₀)) is an isomorphism.
 (Do not assume its homotopy inverse, or the associated homotopies, respect basepoints).
- 2. (a) State the definition of a CW complex, and its topology (the weak topology).
 - (b) Let $p: \widetilde{X} \to X$ be a degree-d covering map. If X is a CW complex, then its cover \widetilde{X} naturally inherits a CW complex structure. Construct the attaching maps and characteristic maps for this CW complex structure, and verify that your construction defines a cellular decomposition of \widetilde{X} . Give complete statements of any properties of covering spaces you use. You do not need to check that the topology of \widetilde{X} agrees with the weak topology with respect to your cell structure. Do, however, verify that \widetilde{X} has d many n-cells for each n-cell of X, and that p restricts to a homeomorphism from each (open) n-cell of \widetilde{X} to an (open) n-cell of X.
- 3. Let F_5 be the free group on 5 letters. Prove that every finite-index subgroup of F_5 is a free group with rank congruent to 1 mod 4, and conversely that every free group of rank $m \ge 5$ congruent to 1 mod 4 occurs as a finite-index subgroup of F_5 .
- 4. Let *X* be the quotient space defined as the union of the polygons below, modulo the given edge identifications.



- (a) Compute the homology of X.
- (b) Let $B \subseteq X$ be the image of the loop b. Prove that B is not a retract of X.
- 5. Let $Y \cong S^n$ be a smooth *n*-sphere, and let $X \subseteq Y$ be a smoothly embedded *d*-sphere, for some $0 \le d < n$.
 - (a) Show that the inclusion $t: X \to Y$ is nullhomotopic.
 - (b) Compute the reduced homology groups of the quotient space Y/X.