
Algebraic Topology QR Exam – Jan 2024

1. (a) State the definition of a CW complex, and its topology (the weak topology).

(b) Let X be a CW complex and A ⊆ X a nonempty CW subcomplex. Working directly from your
definition, describe a CW complex structure on the quotient space X/A, and verify explicitly that the
quotient topology on X/A agrees with the weak topology of your given CW complex structure.

2. (a) Let X be a path-connected, locally path-connected, and semi-locally simply connected space. Let
p : (X̃ , ṽ) → (X ,v) be the covering space associated to a subgroup H ⊆ π1(X ,v). For an element
[γ]∈ π1(X ,v), let γ̃ denote the lift of γ to X̃ starting at ṽ. Show that [γ]∈ π1(X ,v) is in the normalizer
N(H) of H if and only if the lift γ̃ has endpoint w̃ := γ̃(1) in the orbit of ṽ under the deck group of
the cover p.

(b) Consider the wedge S1 ∨ S1 of circles a and b with wedge point v. Below is a (based) cover asso-
ciated to a certain subgroup H of π1(S1 ∨ S1,v). The covering map is specified by the edge labels
and orientations, and a basepoint ṽ is marked with a gray dot. Find a (not necessarily free) finite
generating set for the normalizer N(H) of H, with very brief justification.

3. Fix g≥ 0. The closed orientable genus-g surface Σg is the boundary of a compact 3-dimensional manifold
Hg called a genus-g handlebody, as pictured for g = 3. [Image by Oleg Alexandrov]

The doubled handlebody Dg is obtained by gluing two copies of Hg along their boundary via the identity
map. Concretely, for H = H′ = Hg and I : H → H′ the the identity map, the space Dg is the quotient of
the disjoint union H′⊔H by the equivalence relation I(x)∼ x for all x ∈ ∂H = Σg.

(a) Compute π1(Dg).

(b) Compute H̃∗(Dg).

For this question, you can assert descriptions of the fundamental groups and homology groups of Σg and
Hg without proof. Please justify the other steps in your computation.
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4. The following proposition is a step in the proof of the Five Lemma. Perform a diagram chase to prove
this proposition.

Proposition. Suppose that in the following commutative diagram of abelian groups,

• Both rows are exact.
• The maps β and δ are injective.
• The map α is surjective.

A
f
//

α

��

B
g

//

β

��

C h //

γ

��

D

δ

��

A′
f ′
// B′

g′
// C′

h′
// D′

Then the map γ is injective.

5. Let f : X →Y be a continuous map of nonempty topological spaces. Let [0,1] denote the closed interval.

The mapping cylinder M f of f is obtained by gluing X × [0,1] to Y via f in the following sense: it is the
quotient of the disjoint union of X × [0,1] and Y by the equivalence relation generated by (x,1)∼ f (x).

Let X0 denote the image of X ×{0} in M f . The mapping cone C f of f is the quotient of M f that collapses
X0 to a point.

The spaces M f and C f , respectively, are illustrated below. [Images by Fernando Muro]

Fix k ≥ 0 in Z. Prove that the induced map f∗ : Hi(X) → Hi(Y ) is an isomorphism for 0 ≤ i ≤ k if
H̃i(C f ) = 0 for 0 ≤ i ≤ k+1.

Hint: First verify that (M f ,X0) is a good pair.
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Solutions
[Note: These solutions contain more detail than is expected on the exam.]

1. (a) There are multiple standard ways to define a CW complex. Here is one (following Hatcher):
A CW complex is a (filtered) topological space X defined inductively as follows. Its 0-skeleton X (0)

is a discrete set of points. For each n, the n-skeleton X (n) is built from the (n−1)-skeleton by gluing
a set of closed n-disks {Dn

α}α along their boundaries via continuous attaching maps φα : ∂Dn
α →

X (n−1), as follows. We define X (n) to be the quotient of

X (n−1)
⊔
α

Dn
α

via the equivalence relation that identifies a point in X (n−1) with all points in its preimages under φα

for all α . We let X =
⋃

n≥0 X (n).
We endow X with the weak topology: a subset U ⊆ X is open in X (respectively, closed) if and only
if U ∩X (n) is open in X (n) (respectively, closed) for every n.
A cell of X is the image of int(Dn

α) for some n,α .

(b) Let X be a CW complex, and A⊆ X a CW subcomplex, that is, A is a union of cells of X that is closed
in X . Note that this implies (by definition of closure) that the closure of any cell of A is contained in
A, hence for each cell of A the image of Dn

α = cl(int(Dn
α)) is contained in A.

Our goal is to show that the quotient space X/A inherits a CW complex structure from the structure
on X . Let p : X → X/A denote the quotient map. We first note that p is a closed map. Let C ⊆ X be
closed. Then p−1(p(C)) is either C or C∪A. Both sets are closed, so p(C) is closed by definition of
the quotient topology. Then the restriction of p to any closed subset (in particular, X (n)) is a closed
map, hence also a quotient map onto its image.

We claim that there is a cell structure on Y := X/A as follows. The 0-skeleton Y (0) of Y is the
quotient space X (0)/A(0) ⊆ X/A. In other words, it is a discrete set with one 0-cell for each 0-cell in
X \A, and one 0-cell corresponding to A. For n ≥ 1, there is an n-cell for every n-cell of X that is not
contained in A. For n ≥ 1 we inductively define the n-skeleton Y (n) ⊆ X/A as the image of the map

Y (n−1)
⊔

int(Dn
α ) a cell in X\A

Dn
α

qY
n−→ X/A

where qY
n
∣∣
Y (n−1) is defined by induction, and qY

n
∣∣
Dn

α
is defined as the composite

Dn
α ↪→ X (n−1)

⊔
α

Dn
α

qX
n−→ X (n) −→ X

p−→ X/A.

By construction, as a subspace of X/A, the space Y (n) coincides with the image of X (n) in the quo-
tient X/A. This observation also implies that X/A =

⋃
n Y (n). To complete the proof, we must verify

that qY
n is a quotient map of the correct form, and that the weak topology on Y =

⋃
Y (n) agrees with

the quotient topology on X/A.

We will show that qY
n is a quotient map onto its image. Suppose a set U ⊆ Y (n) has open preimage

W := (qY
n )

−1(U); we must show that U is open. That W is open means W ∩Y (n−1) is open in Y (n−1)

and W ∩Dn
α is open in Dn

α for all indices n,α corresponding to cells of X \A. Consider the preimage
of U in X (n−1)⊔

α Dn
α under (p

∣∣
X(n))◦ (qX

n ). Its intersection with X (n−1) is the preimage of the open
subset W ∩Y (n−1) of Y (n−1) under the continuous map X (n−1) → Y (n−1). For all n,α indexing cells

3



not in A, the preimage intersects Dn
α in the open subset W ∩Dn

α . And for all n,α indexing cells of A,
the preimage intersects Dα

n in Dα
n or in ∅, depending on whether U contains the point of X/A that is

the image of A. Thus the preimage of U is open in X (n−1)⊔
α Dn

α . Since qX
n and p

∣∣
X(n) are quotient

maps, their composite is a quotient map, so we conclude that U is open in Y (n).

We can check moreover (by considering the fibres of qY
n ) that it is the quotient map corresponding to

the equivalence relation we obtain from the data of the attaching maps

Dn
α

φα−→ X (n)
p
∣∣

X(n)
−−−→ Y (n),

and we conclude that the map qY
n does define a CW structure in the sense of the definition given in

part (a).

Finally, we show the quotient topology on X/A agrees with the weak topology. Since p is a closed
map, Y (n) = p(X (n)) is closed in the quotient topology on X/A. Thus for any subset C ∈ X/A that is
closed in the quotient topology, the intersection C∩Y (n) is closed for all n, so C is closed in the weak
topology. Suppose conversely that C ⊆ X/A is a subset with the property that C∩Y (n) is closed in
Y (n) for all n. Since the restriction p

∣∣
X(n) is continuous, it follows that

(
p
∣∣
X(n)

)−1
(C∩Y (n)) is closed

in X (n) for all n. But

p−1(C)∩X (n) =
(

p
∣∣
X(n)

)−1
(C) =

(
p
∣∣
X(n)

)−1
(C∩Y (n))

hence p−1(C) is closed in X by definition of the weak topology on X . Therefore C is closed in X/A
by definition of the quotient topology. This concludes the proof.

2. (a) Let w̃ be a point in the fibre above v, and suppose there is a deck transformation f mapping w̃ to
ṽ. Recall that a deck transformation of the cover p : X̃ → X is a homeomorphism f : X̃ → X that
is an automorphism of the cover in the sense that p◦ f = p. The inverse homeomorphism f−1 of f
automatically also satisfies the condition p◦ f−1 = p.
We may view f as a lift of p : (X̃ , w̃)→ (X ,v) to the cover p : (X̃ , ṽ)→ (X ,v), and its inverse f−1 as
a lift of the map p : (X̃ , ṽ)→ (X ,v) to the cover p : (X̃ , w̃)→ (X ,v).

(X̃ , ṽ)

(X̃ , w̃) (X ,v)

p
f

p

(X̃ , w̃)

(X̃ , ṽ) (X ,v)

p
f−1

p

The lifting criterion for covering spaces states:
Theorem. Let p : (X̃ , x̃0) → (X ,x0) be a covering space map and f : (Y,y0) → (X ,x0)
any continuous map. Assume Y is path-connected and locally path-connected. Then a lift
f̃ : (Y,y0)→ (X̃ , x̃0) of f exists if and only if f∗(π1(Y,y0))⊆ p∗(π1(X̃ , x̃0)).

The cover X̃ is path-connected by assumption (the cover of a path-connected, locally path-connected,
semi-locally simply connected space associated to a subgroup H ⊆ π1(X ,v) is path-connected by the
classification theorem for covers). The lifting criterion therefore applies. Thus the deck map f and
its inverse f−1 exist if and only if

p∗(π1(X̃ , w̃)) ⊆ p∗(π1(X̃ , ṽ)) and p∗(π1(X̃ , ṽ)) ⊆ p∗(π1(X̃ , w̃)),

that is, the lifts f and f−1 exist if and only if p∗(π1(X̃ , ṽ)) = p∗(π1(X̃ , w̃)). Note that if both lifts
exist then they are automatically inverses, since their composites f ◦ f−1 and f−1 ◦ f are each lifts of
maps from a connected space that fix a point (ṽ and w̃, respectively) and hence are the identity maps.
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Now consider a loop γ in X based at v that lifts to a path γ̃ from ṽ to w̃. We may use this lift to define
a change-of-basepoint map, giving an isomorphism between the fundamental group of X̃ based at ṽ
and at w̃.

π1(X̃ , w̃)
∼=−→ π1(X̃ , ṽ)

[α] 7−→ [γ̃ ·α · γ̃−1]

But the induced map p∗ on paths is compatible with concatenation of paths, so

p∗(γ̃ ·α · γ̃−1) = p∗(γ̃) · p∗(α) · p∗(γ̃−1) = γ · p∗(α) · γ−1

Thus
p∗(π1(X̃ , w̃)) = γ ·

(
p∗(π1(X̃ , ṽ))

)
· γ−1,

and we have equality p∗(π1(X̃ , ṽ)) = p∗(π1(X̃ , w̃)) if and only if γ is in the normalizer of H =
p∗(π1(X̃ , ṽ)). The claim follows.

(b) By part (a), the normalizer N(H) of π1(S1 ∨ S1,v) consists of all loops whose lift to ṽ has endpoint
w̃ in the orbit of ṽ under the deck action. For a given vertex w̃ ∈ p−1(v), the set of loops that lift to a
path from ṽ to w̃ are a right coset of H in π1(S1 ∨S1,v). Thus N(H) is a union of right cosets of H,
and it is generated by H plus a representative of each coset.

To find generators for H, we choose a maximal tree in the cover. One such choice is shown in pink,
which corresponds to (free) generating set b2, ab−1ab−1, ab2a−1 for H.

Now we consider the deck action on the cover. By visual inspection, the only non-identity graph
automorphism that respects the labels and orientations of the edges is 180◦ rotation of the graph in
the plane of the page. Hence this is the only non-identity deck map. We choose a representative of
the associated right coset for H by choosing a path from ṽ to its image w̃ under the deck map; one
such choice of path is shown, corresponding to the loop ab ∈ π1(S1 ∨S1,v).
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Thus one possible set of generators for the normalizer N(H) is

b2, ab−1ab−1, ab2a−1, ab.

3. Per the question, we can use the following facts about Σg and Hg without proof. We know that π1(Σg) is
generated by g longitudinal loops a1, . . .ag and g meridian loops b1, . . . ,bg, as shown for g = 2.

a1 a2

b2b1

The fundamental group is given by the presentation

π1(Σg) =
〈

a1,b1,a2,b2, . . . ,ag,bg

∣∣∣ [a1,b1][a2,b2] · · · [ag,bg]
〉

where [a,b] denotes the commutator [a,b] = aba−1b−1.

By abuse of notation, we also write ai and bi to denote the corresponding homology classes. Then

H̃k(Σg) =


0, k = 0

Z{a1,b1,a2,b2, . . . ,ag,bg} ∼= Z2g, k = 1
Z, k = 2
0, k ≥ 3

By inspection, the handlebody Hg deformation retracts onto a wedge of g circles. Its fundamental group
is thus a free group on g generators a1, . . .ag again corresponding to the g longitudinal loops.

π1(Σg) =
〈

a1, . . . ,ag

〉
and its homology is

H̃k(Hg) =

 0, k = 0
Z{a1, . . . ,ag} ∼= Zg, k = 1

0, k ≥ 2

The loops bi are contractible in Hg, as we see in the picture for g = 2. The inclusion of ι : Σg → Hg
induces the maps

π1(Σg)−→ π1(Hg)

ai 7−→ ai

bi 7−→ 0

H1(Σg)−→ H1(Hg)

ai 7−→ ai

bi 7−→ 0
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H2(Σg)
0−→ H2(Hg)

We will proceed by decomposing Dg into the union of two open subsets, and then applying the van
Kampen and Mayer–Vietoris theorems.

Remark: Another approach to this problem is to argue that Dg is homeomorphic to a connected sum of g
copies of S1 ×S2.

To construct this open cover, first observe that (as with all manifolds with compact boundary) we can find
a collar neighbourhood of ∂Hg in Hg that derformation retracts back to ∂Hg. Let A1 be the union of the
first handlebody in Dg and this collar neighbourhood in the second. Similarly let A2 be the corresponding
neighbourhood of the second handlebody in Dg. Then

A1 ≃ Hg A2 ≃ Hg A1 ∩A2 ≃ Σg.

(a) We will use van Kampen’s theorem to prove that π1(Dg) is a rank-g free group. Van Kampen states,

Theorem (Van Kampen). Suppose a space (X ,x0) is a union of path-connected open sub-
sets A1,A2, each containing the basepoint x0, and with path-connected intersection A1∩A2.
Then π1(X ,x0)∼= π1(A1,x0)∗π1(A1∩A2,x0) π1(A2,x0).

Here, π1(A1,x0) ∗π1(A1∩A2,x0) π1(A2,x0) is the free product with amalgamation, defined as
follows. Define ιi : π1(A1 ∩A2,x0)→ π1(Ai,x0) for i = 1,2 to be the maps induced by the
inclusions A1 ∩A2 ↪→ Ai. Then the amalgamated free product is the quotient of the free
product π1(A1,x0) ∗ π1(A1,x0) by the subgroup normally generated by the identifications
ι1(α)∼ ι2(α) for all α ∈ π1(A1 ∩A2,x0).

Since our chosen sets A1,A2, and A1 ∩A2 are open and path-connected, we can apply van Kampen’s
theorem to the cover Dg = A1 ∪A2. Observe,

π1(A1 ∩A2)∼= ⟨a1,b1, . . . ,ag,bg | ∼⟩ −→ π1(A1)∼= ⟨a1, . . . ,ag⟩
ai 7−→ ai

bi 7−→ 0

π1(A1 ∩A2)∼= ⟨a1,b1, . . . ,ag,bg | ∼⟩ −→ π1(A2)∼= ⟨a1
′, . . . ,ag

′⟩
ai 7−→ ai

′

bi 7−→ 0

Thus there is an isomorphism

π1(Dg) ∼= ⟨a1, . . . ,ag⟩ ∗ ⟨a1
′, . . . ,ag

′⟩/normal closure of (ai(ai
′)−1)i

We claim that this group is isomorphic to the free group Fg = ⟨x1, . . . ,xg⟩. To verify this rigorously,
consider the homomorphism

⟨a1, . . . ,ag⟩ ∗ ⟨a1
′, . . . ,ag

′⟩ −→ Fg

ai, ai
′ 7−→ xi
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It vanishes on the relations ai(ai
′)−1, thus factors through a homomorphism π1(Dg)→ Fg. We can

see this map is an isomorphism by checking directly that the following composites are the identity
maps.

⟨a1, . . . ,ag⟩ ∗ ⟨a1
′, . . . ,ag

′⟩/∼−→ Fg −→ ⟨a1, . . . ,ag⟩ ∗ ⟨a1
′, . . . ,ag

′⟩/∼
ai, ai

′ 7−→ xi, xi 7−→ ai

Fg −→ ⟨a1, . . . ,ag⟩ ∗ ⟨a1
′, . . . ,ag

′⟩/∼−→ Fg

xi 7−→ ai, ai, ai
′ 7−→ xi

We conclude that π1(Dg) is a free group on g free generators, corresponding to the g longitudinal
loops in the first copy of Hg (equivalently, in the second copy of Hg).

(b) We will prove

H̃k(Dg) =


0, k = 0

Zg, k = 1
Zg, k = 2,
Z, k = 3
0, k ≥ 4

Consider the Mayer–Vietoris long exact sequence associated to the open cover Dg = A1 ∪A2.

· · · H̃n(A1 ∩A2) H̃n(A1)⊕ H̃n(A2) H̃n(Dg) H̃n−1(A1 ∩A2) · · ·δ

Given our descriptions of A1, A2, and their intersection, this long exact sequence is as follows (all
terms not shown vanish).

· · · H̃3(Hg)⊕ H̃3(Hg) H̃3(Dg) H̃2(Σg) H̃2(Hg)⊕ H̃2(Hg)

0 Z 0

H̃2(Dg) H̃1(Σg) H̃1(Hg)⊕ H̃1(Hg) H̃1(Dg)

Z{a1,b1, . . . ,ag,bg}
Z{a1,...,ag}

⊕
Z{a1

′,...,ag
′}

H̃0(Σg) H̃0(Hg)⊕ H̃0(Hg) H̃0(Dg) H̃−1(Σg) · · ·

0 0 0

By exactness, we see H̃0(Dg) ∼= 0, we see H̃3(Dg) ∼= Z, and we see H̃k(Dg) vanishes for k ≥ 4.
Moreover, we see that H̃2(Dg) and H̃1(Dg) are isomorphic to the kernel and cokernel, respectively,
of the map
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H̃1(Σg) H̃1(Hg)⊕ H̃1(Hg)

Z{a1,b1, . . . ,ag,bg} Z{a1, . . . ,ag}⊕Z{a1
′, . . . ,ag

′}

ai ai −ai
′

bi 0

φ

The kernel of this map is Z{b1, . . . ,bg} ∼= Zg. (We could check this rigorously by expanding the
expression φ(ca

1a1 + cb
1b1 + . . .) = 0 for ca

i ,c
b
i ∈ Z). Its cokernel is also isomorphic to Zg, which we

could verify by the same line of argument as in part (a). (By the Hurewicz theorem, we could also
calculate H̃1(Dg) directly from part (a) by abelianizing π1(Dg)). This concludes the calculation.

4. For the diagram

A
f
//

α

��

B
g

//

β

��

C h //

γ

��

D

δ

��

A′
f ′
// B′

g′
// C′

h′
// D′

we assume

• both rows are exact,

• β and δ are injective,

• α is surjective.

We wish to show γ is injective. To do this, choose an element c in ker(γ). The goal of our diagram chase
is to show that c = 0.

A B C D

A′ B′ C′ D′

c

0

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

Necessarily h′(0) = 0.
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A B C D

A′ B′ C′ D′

c

0 0

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

By commutativity of the diagram, δ (h(c)) = 0.

A B C D

A′ B′ C′ D′

c h(c)

0 0

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

But δ is injective by assumption, which implies h(c) = 0.

A B C D

A′ B′ C′ D′

c 0

0

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

Then c ∈ ker(h), and ker(h) = im(g) by exactness at C. There therefore exists some b ∈ B with g(b) = c.

A B C D

A′ B′ C′ D′

b c

0

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

By commutativity, g′(β (b)) = 0.
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A B C D

A′ B′ C′ D′

b c

β (b) 0

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

Thus β (b) ∈ ker(g′). By exactness at B′, ker(g′) = im( f ′). Thus there exists some a′ ∈ A with f ′(a) =
β (b).

A B C D

A′ B′ C′ D′

b c

a′ β (b) 0

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

The map α surjects by assumption, so there exists some a ∈ A with α(a) = a′.

A B C D

A′ B′ C′ D′

a b c

a′ β (b) 0

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

By commutativity of the diagram, β ( f (a)) = β (b).

A B C D

A′ B′ C′ D′

a b c

a′ β (b) 0

f (a)

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

But β is injective by assumption, so this implies f (a) = b.
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A B C D

A′ B′ C′ D′

a b c

a′ β (b) 0

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

But then b ∈ im( f ). By exactness at B, im( f ) = ker(g). Hence c = g(b) = 0.

A B C D

A′ B′ C′ D′

a b c

0

= 0

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

α β γ δ

f g h

f ′ g′ h′

This concludes the proof.

5. We note that the restriction q|X×{0} is injective and (since (X ×{0}) is a closed saturated subset of the
domain) is a quotient map, hence X0 is homeomorphic to X ×{0} ∼= X . Similarly q|Y is injective, and we
can check it is a homeomorphism: Consider a closed subset C ⊆Y . The preimage f−1(C) is closed in X ,
so q−1(q(C)) =C⊔ ( f−1(C)×{1}) is closed in Y ⊔ (X × I). By the definition of the quotient topology,
this implies q(C)⊆ q(Y ) is closed in M f , which implies q|Y is a homeomorphism as claimed.

As in the hint, we first verify that (M f ,X0) is a good pair. This means we must check that X0 is a
nonempty closed subspace that is a deformation retract of some neighborhood U in M f . By construction,
the preimage of X0 under the quotient map q : (X × [0,1])⊔Y → M f is X ×{0}, which is nonempty
and closed. Thus X0 is nonempty, and it is closed by definition of the quotient topology. Now, consider
U = q(X ×

[
0, 1

2

)
) in M f . Its full preimage under q is the open set X ×

[
0, 1

2

)
, hence it is open in M f .

Consider the deformation retraction of X ×
[
0, 1

2

)
onto X ×{0}

Ft : X ×
[

0,
1
2

)
−→ X ×

[
0,

1
2

)
(x,s) 7−→ (x,s(1− t))

At each time t, the composition q ◦Ft : X ×
[
0, 1

2

)
→ U is constant on fibres of q, hence this homotopy

factors continuously through a map from U . Thus there is an induced homotopy U →U that deformation
retracts U to X0.

Next, we show that there is a homotopy equivalence M f → Y . Consider the deformation retraction of
X × [0,1] onto X ×{1},

Gt : X × [0,1]−→ X × [0,1]
(x,s) 7−→ (x,s(1− t)+ t)

12



and extend Gt to a homotopy (X × [0,1])⊔Y → (X × [0,1])⊔Y by defining it to be the identity on Y at all
times t. For each t, the homotopy is constant on equivalence classes of q. Hence it induces a deformation
retraction G′

t of M f onto Y .

Now, observe that the following composite is the map f :

X ∼=
// X0
� � ι // M f

G′
1

≃
// Y

x � // q(x,0) � // q(x,0) � // q(x,1)∼ f (x)

Since the first and third maps are homotopy equivalences, they induce isomorphisms on homology.
Hence the map f induces an isomorphism on degree-i homology if and only if the inclusion ι of X0
into M f does.

Finally, we consider the long exact sequence of the pair (M f ,X0). Because this is a good pair, for all i
we have isomorphisms

Hi(M f ,X0)∼= H̃i(M f /X0) = H̃i(C f ).

· · · Hi+1(M f ,X0) H̃i(X0) H̃i(M f ) Hi(M f ,X0) · · ·

H̃i+1(C f ) H̃i(C f )

∼=

ι∗

∼=

By exactness, the map ι∗ is an isomorphism whenever H̃i+1(C f ) and H̃i(C f ) vanish. The result follows.
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