Algebraic Topology QR Exam - Jan 2024

1. (a) State the definition of a CW complex, and its topology (the weak topology).
(b) Let X be a CW complex and $A \subseteq X$ a nonempty CW subcomplex. Working directly from your definition, describe a CW complex structure on the quotient space X / A, and verify explicitly that the quotient topology on X / A agrees with the weak topology of your given CW complex structure.
2. (a) Let X be a path-connected, locally path-connected, and semi-locally simply connected space. Let $p:(\widetilde{X}, \widetilde{v}) \rightarrow(X, v)$ be the covering space associated to a subgroup $H \subseteq \pi_{1}(X, v)$. For an element $[\gamma] \in \pi_{1}(X, v)$, let $\widetilde{\gamma}$ denote the lift of γ to \widetilde{X} starting at \widetilde{v}. Show that $[\gamma] \in \pi_{1}(X, v)$ is in the normalizer $N(H)$ of H if and only if the lift $\widetilde{\gamma}$ has endpoint $\widetilde{w}:=\widetilde{\gamma}(1)$ in the orbit of \widetilde{v} under the deck group of the cover p.
(b) Consider the wedge $S^{1} \vee S^{1}$ of circles a and b with wedge point v. Below is a (based) cover associated to a certain subgroup H of $\pi_{1}\left(S^{1} \vee S^{1}, v\right)$. The covering map is specified by the edge labels and orientations, and a basepoint \widetilde{v} is marked with a gray dot. Find a (not necessarily free) finite generating set for the normalizer $N(H)$ of H, with very brief justification.

3. Fix $g \geq 0$. The closed orientable genus- g surface Σ_{g} is the boundary of a compact 3-dimensional manifold \mathbf{H}_{g} called a genus- g handlebody, as pictured for $g=3$. [Image by Oleg Alexandrov]

The doubled handlebody \mathbf{D}_{g} is obtained by gluing two copies of \mathbf{H}_{g} along their boundary via the identity map. Concretely, for $\mathbf{H}=\mathbf{H}^{\prime}=\mathbf{H}_{g}$ and $I: \mathbf{H} \rightarrow \mathbf{H}^{\prime}$ the the identity map, the space \mathbf{D}_{g} is the quotient of the disjoint union $\mathbf{H}^{\prime} \sqcup \mathbf{H}$ by the equivalence relation $I(x) \sim x$ for all $x \in \partial \mathbf{H}=\Sigma_{g}$.
(a) Compute $\pi_{1}\left(\mathbf{D}_{g}\right)$.
(b) Compute $\widetilde{H}_{*}\left(\mathbf{D}_{g}\right)$.

For this question, you can assert descriptions of the fundamental groups and homology groups of Σ_{g} and \mathbf{H}_{g} without proof. Please justify the other steps in your computation.
4. The following proposition is a step in the proof of the Five Lemma. Perform a diagram chase to prove this proposition.

Proposition. Suppose that in the following commutative diagram of abelian groups,

- Both rows are exact.
- The maps β and δ are injective.
- The map α is surjective.

Then the map γ is injective.
5. Let $f: X \rightarrow Y$ be a continuous map of nonempty topological spaces. Let $[0,1]$ denote the closed interval. The mapping cylinder M_{f} of f is obtained by gluing $X \times[0,1]$ to Y via f in the following sense: it is the quotient of the disjoint union of $X \times[0,1]$ and Y by the equivalence relation generated by $(x, 1) \sim f(x)$.
Let X_{0} denote the image of $X \times\{0\}$ in M_{f}. The mapping cone C_{f} of f is the quotient of M_{f} that collapses X_{0} to a point.
The spaces M_{f} and C_{f}, respectively, are illustrated below. [Images by Fernando Muro]

Fix $k \geq 0$ in \mathbb{Z}. Prove that the induced map $f_{*}: H_{i}(X) \rightarrow H_{i}(Y)$ is an isomorphism for $0 \leq i \leq k$ if $\widetilde{H}_{i}\left(C_{f}\right)=0$ for $0 \leq i \leq k+1$.
Hint: First verify that $\left(M_{f}, X_{0}\right)$ is a good pair.

Solutions

[Note: These solutions contain more detail than is expected on the exam.]

1. (a) There are multiple standard ways to define a CW complex. Here is one (following Hatcher):

A CW complex is a (filtered) topological space X defined inductively as follows. Its 0 -skeleton $X^{(0)}$ is a discrete set of points. For each n, the n-skeleton $X^{(n)}$ is built from the $(n-1)$-skeleton by gluing a set of closed n-disks $\left\{D_{\alpha}^{n}\right\}_{\alpha}$ along their boundaries via continuous attaching maps $\phi_{\alpha}: \partial D_{\alpha}^{n} \rightarrow$ $X^{(n-1)}$, as follows. We define $X^{(n)}$ to be the quotient of

$$
X^{(n-1)} \bigsqcup_{\alpha} D_{\alpha}^{n}
$$

via the equivalence relation that identifies a point in $X^{(n-1)}$ with all points in its preimages under ϕ_{α} for all α. We let $X=\bigcup_{n \geq 0} X^{(n)}$.
We endow X with the weak topology: a subset $U \subseteq X$ is open in X (respectively, closed) if and only if $U \cap X^{(n)}$ is open in $X^{(n)}$ (respectively, closed) for every n.
A cell of X is the image of $\operatorname{int}\left(D_{\alpha}^{n}\right)$ for some n, α.
(b) Let X be a CW complex, and $A \subseteq X$ a CW subcomplex, that is, A is a union of cells of X that is closed in X. Note that this implies (by definition of closure) that the closure of any cell of A is contained in A, hence for each cell of A the image of $D_{\alpha}^{n}=\operatorname{cl}\left(\operatorname{int}\left(D_{\alpha}^{n}\right)\right)$ is contained in A.

Our goal is to show that the quotient space X / A inherits a CW complex structure from the structure on X. Let $p: X \rightarrow X / A$ denote the quotient map. We first note that p is a closed map. Let $C \subseteq X$ be closed. Then $p^{-1}(p(C))$ is either C or $C \cup A$. Both sets are closed, so $p(C)$ is closed by definition of the quotient topology. Then the restriction of p to any closed subset (in particular, $X^{(n)}$) is a closed map, hence also a quotient map onto its image.

We claim that there is a cell structure on $Y:=X / A$ as follows. The 0 -skeleton $Y^{(0)}$ of Y is the quotient space $X^{(0)} / A^{(0)} \subseteq X / A$. In other words, it is a discrete set with one 0 -cell for each 0 -cell in $X \backslash A$, and one 0 -cell corresponding to A. For $n \geq 1$, there is an n-cell for every n-cell of X that is not contained in A. For $n \geq 1$ we inductively define the n-skeleton $Y^{(n)} \subseteq X / A$ as the image of the map

$$
Y^{(n-1)} \bigsqcup_{\operatorname{int}\left(D_{\alpha}^{n}\right) \text { a cell in } X \backslash A} D_{\alpha}^{n} \quad \xrightarrow{q_{n}^{Y}} \quad X / A
$$

where $\left.q_{n}^{Y}\right|_{Y^{(n-1)}}$ is defined by induction, and $\left.q_{n}^{Y}\right|_{D_{\alpha}^{n}}$ is defined as the composite

$$
D_{\alpha}^{n} \quad \hookrightarrow \quad X^{(n-1)} \bigsqcup_{\alpha} D_{\alpha}^{n} \quad \xrightarrow{q_{n}^{X}} \quad X^{(n)} \quad \longrightarrow \quad X \quad \xrightarrow{p} X / A
$$

By construction, as a subspace of X / A, the space $Y^{(n)}$ coincides with the image of $X^{(n)}$ in the quotient X / A. This observation also implies that $X / A=\bigcup_{n} Y^{(n)}$. To complete the proof, we must verify that q_{n}^{Y} is a quotient map of the correct form, and that the weak topology on $Y=\bigcup Y^{(n)}$ agrees with the quotient topology on X / A.

We will show that q_{n}^{Y} is a quotient map onto its image. Suppose a set $U \subseteq Y^{(n)}$ has open preimage $W:=\left(q_{n}^{Y}\right)^{-1}(U)$; we must show that U is open. That W is open means $W \cap Y^{(n-1)}$ is open in $Y^{(n-1)}$ and $W \cap D_{\alpha}^{n}$ is open in D_{α}^{n} for all indices n, α corresponding to cells of $X \backslash A$. Consider the preimage of U in $X^{(n-1)} \bigsqcup_{\alpha} D_{\alpha}^{n}$ under $\left(\left.p\right|_{X^{(n)}}\right) \circ\left(q_{n}^{X}\right)$. Its intersection with $X^{(n-1)}$ is the preimage of the open subset $W \cap Y^{(n-1)}$ of $Y^{(n-1)}$ under the continuous map $X^{(n-1)} \rightarrow Y^{(n-1)}$. For all n, α indexing cells
not in A, the preimage intersects D_{α}^{n} in the open subset $W \cap D_{\alpha}^{n}$. And for all n, α indexing cells of A, the preimage intersects D_{n}^{α} in D_{n}^{α} or in \varnothing, depending on whether U contains the point of X / A that is the image of A. Thus the preimage of U is open in $X^{(n-1)} \bigsqcup_{\alpha} D_{\alpha}^{n}$. Since q_{n}^{X} and $\left.p\right|_{X^{(n)}}$ are quotient maps, their composite is a quotient map, so we conclude that U is open in $Y^{(n)}$.

We can check moreover (by considering the fibres of q_{n}^{Y}) that it is the quotient map corresponding to the equivalence relation we obtain from the data of the attaching maps

$$
D_{\alpha}^{n} \xrightarrow{\phi_{\alpha}} X^{(n)} \xrightarrow{\left.p\right|_{X^{(n)}}} Y^{(n)}
$$

and we conclude that the map q_{n}^{Y} does define a CW structure in the sense of the definition given in part (a).

Finally, we show the quotient topology on X / A agrees with the weak topology. Since p is a closed map, $Y^{(n)}=p\left(X^{(n)}\right)$ is closed in the quotient topology on X / A. Thus for any subset $C \in X / A$ that is closed in the quotient topology, the intersection $C \cap Y^{(n)}$ is closed for all n, so C is closed in the weak topology. Suppose conversely that $C \subseteq X / A$ is a subset with the property that $C \cap Y^{(n)}$ is closed in $Y^{(n)}$ for all n. Since the restriction $\left.p\right|_{X^{(n)}}$ is continuous, it follows that $\left(\left.p\right|_{X^{(n)}}\right)^{-1}\left(C \cap Y^{(n)}\right)$ is closed in $X^{(n)}$ for all n. But

$$
p^{-1}(C) \cap X^{(n)}=\left(\left.p\right|_{X^{(n)}}\right)^{-1}(C)=\left(\left.p\right|_{X^{(n)}}\right)^{-1}\left(C \cap Y^{(n)}\right)
$$

hence $p^{-1}(C)$ is closed in X by definition of the weak topology on X. Therefore C is closed in X / A by definition of the quotient topology. This concludes the proof.
2. (a) Let \widetilde{w} be a point in the fibre above v, and suppose there is a deck transformation f mapping \widetilde{w} to \widetilde{v}. Recall that a deck transformation of the cover $p: \widetilde{X} \rightarrow X$ is a homeomorphism $f: \widetilde{X} \rightarrow X$ that is an automorphism of the cover in the sense that $p \circ f=p$. The inverse homeomorphism f^{-1} of f automatically also satisfies the condition $p \circ f^{-1}=p$.
We may view f as a lift of $p:(\widetilde{X}, \widetilde{w}) \rightarrow(X, v)$ to the cover $p:(\widetilde{X}, \widetilde{v}) \rightarrow(X, v)$, and its inverse f^{-1} as a lift of the map $p:(\widetilde{X}, \widetilde{v}) \rightarrow(X, v)$ to the cover $p:(\widetilde{X}, \widetilde{w}) \rightarrow(X, v)$.

The lifting criterion for covering spaces states:
Theorem. Let $p:\left(\widetilde{X}, \widetilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering space map and $f:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ any continuous map. Assume Y is path-connected and locally path-connected. Then a lift $\widetilde{f}:\left(Y, y_{0}\right) \rightarrow\left(\widetilde{X}, \widetilde{x}_{0}\right)$ of f exists if and only if $f_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right) \subseteq p_{*}\left(\pi_{1}\left(\widetilde{X}, \widetilde{x}_{0}\right)\right)$.
The cover \widetilde{X} is path-connected by assumption (the cover of a path-connected, locally path-connected, semi-locally simply connected space associated to a subgroup $H \subseteq \pi_{1}(X, v)$ is path-connected by the classification theorem for covers). The lifting criterion therefore applies. Thus the deck map f and its inverse f^{-1} exist if and only if

$$
p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{w})\right) \subseteq p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{v})\right) \quad \text { and } \quad p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{v})\right) \subseteq p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{w})\right)
$$

that is, the lifts f and f^{-1} exist if and only if $p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{v})\right)=p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{w})\right)$. Note that if both lifts exist then they are automatically inverses, since their composites $f \circ f^{-1}$ and $f^{-1} \circ f$ are each lifts of maps from a connected space that fix a point (\widetilde{v} and \widetilde{w}, respectively) and hence are the identity maps.

Now consider a loop γ in X based at v that lifts to a path $\widetilde{\gamma}$ from \widetilde{v} to \widetilde{w}. We may use this ${ }_{\widetilde{X}}$ lift to define a change-of-basepoint map, giving an isomorphism between the fundamental group of \widetilde{X} based at \widetilde{v} and at \widetilde{w}.

$$
\begin{aligned}
\pi_{1}(\widetilde{X}, \widetilde{w}) & \xlongequal{\leftrightarrows} \pi_{1}(\widetilde{X}, \widetilde{v}) \\
\quad[\alpha] & \left.\longmapsto \widetilde{\gamma} \cdot \alpha \cdot \widetilde{\gamma}^{-1}\right]
\end{aligned}
$$

But the induced map p_{*} on paths is compatible with concatenation of paths, so

$$
p_{*}\left(\widetilde{\gamma} \cdot \alpha \cdot \widetilde{\gamma}^{-1}\right)=p_{*}(\widetilde{\gamma}) \cdot p_{*}(\alpha) \cdot p_{*}\left(\widetilde{\gamma}^{-1}\right)=\gamma \cdot p_{*}(\alpha) \cdot \gamma^{-1}
$$

Thus

$$
p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{w})\right)=\gamma \cdot\left(p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{v})\right)\right) \cdot \gamma^{-1}
$$

and we have equality $p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{v})\right)=p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{w})\right)$ if and only if γ is in the normalizer of $H=$ $p_{*}\left(\pi_{1}(\widetilde{X}, \widetilde{v})\right)$. The claim follows.
(b) By part (a), the normalizer $N(H)$ of $\pi_{1}\left(S^{1} \vee S^{1}, v\right)$ consists of all loops whose lift to \widetilde{v} has endpoint \widetilde{w} in the orbit of \widetilde{v} under the deck action. For a given vertex $\widetilde{w} \in p^{-1}(v)$, the set of loops that lift to a path from \widetilde{v} to \widetilde{w} are a right coset of H in $\pi_{1}\left(S^{1} \vee S^{1}, v\right)$. Thus $N(H)$ is a union of right cosets of H, and it is generated by H plus a representative of each coset.

To find generators for H, we choose a maximal tree in the cover. One such choice is shown in pink, which corresponds to (free) generating set $b^{2}, a b^{-1} a b^{-1}, a b^{2} a^{-1}$ for H.

Now we consider the deck action on the cover. By visual inspection, the only non-identity graph automorphism that respects the labels and orientations of the edges is 180° rotation of the graph in the plane of the page. Hence this is the only non-identity deck map. We choose a representative of the associated right coset for H by choosing a path from \widetilde{v} to its image \widetilde{w} under the deck map; one such choice of path is shown, corresponding to the loop $a b \in \pi_{1}\left(S^{1} \vee S^{1}, v\right)$.

Thus one possible set of generators for the normalizer $N(H)$ is

$$
b^{2}, \quad a b^{-1} a b^{-1}, \quad a b^{2} a^{-1}, \quad a b
$$

3. Per the question, we can use the following facts about Σ_{g} and \mathbf{H}_{g} without proof. We know that $\pi_{1}\left(\Sigma_{g}\right)$ is generated by g longitudinal loops $a_{1}, \ldots a_{g}$ and g meridian loops b_{1}, \ldots, b_{g}, as shown for $g=2$.

The fundamental group is given by the presentation

$$
\pi_{1}\left(\Sigma_{g}\right)=\left\langle a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{g}, b_{g} \mid\left[a_{1}, b_{1}\right]\left[a_{2}, b_{2}\right] \cdots\left[a_{g}, b_{g}\right]\right\rangle
$$

where $[a, b]$ denotes the commutator $[a, b]=a b a^{-1} b^{-1}$.
By abuse of notation, we also write a_{i} and b_{i} to denote the corresponding homology classes. Then

$$
\widetilde{H}_{k}\left(\Sigma_{g}\right)=\left\{\begin{array}{rr}
0, & k=0 \\
\mathbb{Z}\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{g}, b_{g}\right\} \cong \mathbb{Z}^{2 g}, & k=1 \\
\mathbb{Z}, & k=2 \\
0, & k \geq 3
\end{array}\right.
$$

By inspection, the handlebody \mathbf{H}_{g} deformation retracts onto a wedge of g circles. Its fundamental group is thus a free group on g generators $\overline{a_{1}}, \ldots \overline{a_{g}}$ again corresponding to the g longitudinal loops.

$$
\pi_{1}\left(\Sigma_{g}\right)=\left\langle\overline{a_{1}}, \ldots, \overline{a_{g}}\right\rangle
$$

and its homology is

$$
\widetilde{H}_{k}\left(\mathbf{H}_{g}\right)=\left\{\begin{array}{rr}
0, & k=0 \\
\mathbb{Z}\left\{\overline{a_{1}}, \ldots, \overline{a_{g}}\right\} \cong \mathbb{Z}^{g}, & k=1 \\
0, & k \geq 2
\end{array}\right.
$$

The loops b_{i} are contractible in \mathbf{H}_{g}, as we see in the picture for $g=2$. The inclusion of $\imath: \Sigma_{g} \rightarrow \mathbf{H}_{g}$ induces the maps

$$
\begin{aligned}
\pi_{1}\left(\Sigma_{g}\right) & \longrightarrow \pi_{1}\left(\mathbf{H}_{g}\right) \\
a_{i} & \longmapsto \overline{a_{i}} \\
b_{i} & \longmapsto 0 \\
& \\
H_{1}\left(\Sigma_{g}\right) & \longrightarrow H_{1}\left(\mathbf{H}_{g}\right) \\
a_{i} & \longmapsto \overline{a_{i}} \\
b_{i} & \longmapsto 0
\end{aligned}
$$

$$
H_{2}\left(\Sigma_{g}\right) \xrightarrow{0} H_{2}\left(\mathbf{H}_{g}\right)
$$

We will proceed by decomposing \mathbf{D}_{g} into the union of two open subsets, and then applying the van Kampen and Mayer-Vietoris theorems.
Remark: Another approach to this problem is to argue that \mathbf{D}_{g} is homeomorphic to a connected sum of g copies of $S^{1} \times S^{2}$.
To construct this open cover, first observe that (as with all manifolds with compact boundary) we can find a collar neighbourhood of $\partial \mathbf{H}_{g}$ in \mathbf{H}_{g} that derformation retracts back to $\partial \mathbf{H}_{g}$. Let A_{1} be the union of the first handlebody in \mathbf{D}_{g} and this collar neighbourhood in the second. Similarly let A_{2} be the corresponding neighbourhood of the second handlebody in \mathbf{D}_{g}. Then

$$
A_{1} \simeq \mathbf{H}_{g} \quad A_{2} \simeq \mathbf{H}_{g} \quad A_{1} \cap A_{2} \simeq \Sigma_{g}
$$

(a) We will use van Kampen's theorem to prove that $\pi_{1}\left(\mathbf{D}_{g}\right)$ is a rank- g free group. Van Kampen states,

Theorem (Van Kampen). Suppose a space (X, x_{0}) is a union of path-connected open subsets A_{1}, A_{2}, each containing the basepoint x_{0}, and with path-connected intersection $A_{1} \cap A_{2}$. Then $\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(A_{1}, x_{0}\right) *_{\pi_{1}\left(A_{1} \cap A_{2}, x_{0}\right)} \pi_{1}\left(A_{2}, x_{0}\right)$.

Here, $\pi_{1}\left(A_{1}, x_{0}\right) *_{\pi_{1}\left(A_{1} \cap A_{2}, x_{0}\right)} \pi_{1}\left(A_{2}, x_{0}\right)$ is the free product with amalgamation, defined as follows. Define $t_{i}: \pi_{1}\left(A_{1} \cap A_{2}, x_{0}\right) \rightarrow \pi_{1}\left(A_{i}, x_{0}\right)$ for $i=1,2$ to be the maps induced by the inclusions $A_{1} \cap A_{2} \hookrightarrow A_{i}$. Then the amalgamated free product is the quotient of the free product $\pi_{1}\left(A_{1}, x_{0}\right) * \pi_{1}\left(A_{1}, x_{0}\right)$ by the subgroup normally generated by the identifications $l_{1}(\alpha) \sim l_{2}(\alpha)$ for all $\alpha \in \pi_{1}\left(A_{1} \cap A_{2}, x_{0}\right)$.
Since our chosen sets A_{1}, A_{2}, and $A_{1} \cap A_{2}$ are open and path-connected, we can apply van Kampen's theorem to the cover $\mathbf{D}_{g}=A_{1} \cup A_{2}$. Observe,

$$
\begin{aligned}
\pi_{1}\left(A_{1} \cap A_{2}\right) \cong\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right| & \sim\rangle \\
a_{i} & \longmapsto \pi_{1}\left(A_{1}\right) \cong\left\langle\overline{a_{i}}, \ldots, \overline{a_{g}}\right\rangle \\
b_{i} & \longmapsto 0 \\
\pi_{1}\left(A_{1} \cap A_{2}\right) \cong\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right| & \sim\rangle \\
a_{i} & \longmapsto \pi_{1}\left(A_{2}\right) \cong\left\langle{\overline{a_{1}}}^{\prime}, \ldots,{\overline{a_{g}}}^{\prime}\right\rangle \\
b_{i} & \longmapsto 0
\end{aligned}
$$

Thus there is an isomorphism

$$
\pi_{1}\left(\mathbf{D}_{g}\right) \cong\left\langle\overline{a_{1}}, \ldots, \overline{a_{g}}\right\rangle *\left\langle{\overline{a_{1}}}^{\prime}, \ldots,{\overline{a_{g}}}^{\prime}\right\rangle / \text { normal closure of }\left(\overline{a_{i}}\left({\overline{a_{i}}}^{\prime}\right)^{-1}\right)_{i}
$$

We claim that this group is isomorphic to the free group $F_{g}=\left\langle x_{1}, \ldots, x_{g}\right\rangle$. To verify this rigorously, consider the homomorphism

$$
\begin{aligned}
&\left\langle\overline{a_{1}}, \ldots, \overline{a_{g}}\right\rangle *\left\langle{\overline{a_{1}}}^{\prime}, \ldots,{\overline{a_{g}}}^{\prime}\right\rangle \longrightarrow F_{g} \\
& \overline{a_{i}},{\overline{a_{i}}}^{\prime} \longmapsto x_{i}
\end{aligned}
$$

It vanishes on the relations $\overline{a_{i}}\left(\overline{a_{i}}\right)^{-1}$, thus factors through a homomorphism $\pi_{1}\left(\mathbf{D}_{g}\right) \rightarrow F_{g}$. We can see this map is an isomorphism by checking directly that the following composites are the identity maps.

$$
\begin{gathered}
\left\langle\overline{a_{1}}, \ldots, \overline{a_{g}}\right\rangle *\left\langle{\overline{a_{1}}}^{\prime}, \ldots,{\overline{a_{g}}}^{\prime}\right\rangle / \sim \longrightarrow \quad F_{g} \quad \longrightarrow\left\langle\overline{a_{1}}, \ldots, \overline{a_{g}}\right\rangle *\left\langle{\overline{a_{1}}}^{\prime}, \ldots,{\overline{a_{g}}}^{\prime}\right\rangle / \sim \\
\overline{a_{i}},{\overline{a_{i}}}^{\prime} \longmapsto x_{i}, \quad x_{i} \longmapsto \bar{a}_{i} \\
F_{g} \longrightarrow\left\langle\overline{a_{1}}, \ldots, \overline{a_{g}}\right\rangle *\left\langle{\overline{a_{1}}}^{\prime}, \ldots,{\overline{a_{g}}}^{\prime}\right\rangle / \sim \longrightarrow \quad F_{g} \\
x_{i} \longmapsto \overline{a_{i}}, \quad \overline{a_{i}},{\overline{a_{i}}}^{\prime} \longmapsto x_{i}
\end{gathered}
$$

We conclude that $\pi_{1}\left(\mathbf{D}_{g}\right)$ is a free group on g free generators, corresponding to the g longitudinal loops in the first copy of \mathbf{H}_{g} (equivalently, in the second copy of \mathbf{H}_{g}).
(b) We will prove

$$
\widetilde{H}_{k}\left(\mathbf{D}_{g}\right)=\left\{\begin{aligned}
0, & k=0 \\
\mathbb{Z}^{g}, & k=1 \\
\mathbb{Z}^{g}, & k=2 \\
\mathbb{Z}, & k=3 \\
0, & k \geq 4
\end{aligned}\right.
$$

Consider the Mayer-Vietoris long exact sequence associated to the open cover $\mathbf{D}_{g}=A_{1} \cup A_{2}$.

$$
\cdots \longrightarrow \widetilde{H}_{n}\left(A_{1} \cap A_{2}\right) \longrightarrow \widetilde{H}_{n}\left(A_{1}\right) \oplus \widetilde{H}_{n}\left(A_{2}\right) \longrightarrow \widetilde{H}_{n}\left(\mathbf{D}_{g}\right) \xrightarrow{\delta} \widetilde{H}_{n-1}\left(A_{1} \cap A_{2}\right) \longrightarrow \cdots
$$

Given our descriptions of A_{1}, A_{2}, and their intersection, this long exact sequence is as follows (all terms not shown vanish).

By exactness, we see $\widetilde{H}_{0}\left(\mathbf{D}_{g}\right) \cong 0$, we see $\widetilde{H}_{3}\left(\mathbf{D}_{g}\right) \cong \mathbb{Z}$, and we see $\widetilde{H}_{k}\left(\mathbf{D}_{g}\right)$ vanishes for $k \geq 4$. Moreover, we see that $\widetilde{H}_{2}\left(\mathbf{D}_{g}\right)$ and $\widetilde{H}_{1}\left(\mathbf{D}_{g}\right)$ are isomorphic to the kernel and cokernel, respectively, of the map

$$
\begin{gathered}
\widetilde{H}_{1}\left(\Sigma_{g}\right) \xrightarrow{\phi} \longrightarrow \widetilde{H}_{1}\left(\mathbf{H}_{g}\right) \oplus \widetilde{H}_{1}\left(\mathbf{H}_{g}\right) \\
\| \\
\mathbb{Z}\left\{a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right\} \quad \mathbb{Z}\left\{\overline{a_{1}}, \ldots, \overline{a_{g}}\right\} \oplus \mathbb{Z}\left\{\overline{a_{1}^{\prime}}, \ldots, \overline{a_{g}^{\prime}}\right\} \\
a_{i} \longmapsto \overline{a_{i}}-{\overline{a_{i}^{\prime}}}^{\prime} \\
b_{i} \longmapsto
\end{gathered}
$$

The kernel of this map is $\mathbb{Z}\left\{b_{1}, \ldots, b_{g}\right\} \cong \mathbb{Z}^{g}$. (We could check this rigorously by expanding the expression $\phi\left(c_{1}^{a} a_{1}+c_{1}^{b} b_{1}+\ldots\right)=0$ for $\left.c_{i}^{a}, c_{i}^{b} \in \mathbb{Z}\right)$. Its cokernel is also isomorphic to \mathbb{Z}^{g}, which we could verify by the same line of argument as in part (a). (By the Hurewicz theorem, we could also calculate $\widetilde{H}_{1}\left(\mathbf{D}_{g}\right)$ directly from part (a) by abelianizing $\left.\pi_{1}\left(\mathbf{D}_{g}\right)\right)$. This concludes the calculation.
4. For the diagram

we assume

- both rows are exact,
- β and δ are injective,
- α is surjective.

We wish to show γ is injective. To do this, choose an element c in $\operatorname{ker}(\gamma)$. The goal of our diagram chase is to show that $c=0$.

Necessarily $h^{\prime}(0)=0$.

By commutativity of the diagram, $\delta(h(c))=0$.

But δ is injective by assumption, which implies $h(c)=0$.

Then $c \in \operatorname{ker}(h)$, and $\operatorname{ker}(h)=\operatorname{im}(g)$ by exactness at C. There therefore exists some $b \in B$ with $g(b)=c$.

By commutativity, $g^{\prime}(\beta(b))=0$.

Thus $\beta(b) \in \operatorname{ker}\left(g^{\prime}\right)$. By exactness at $B^{\prime}, \operatorname{ker}\left(g^{\prime}\right)=\operatorname{im}\left(f^{\prime}\right)$. Thus there exists some $a^{\prime} \in A$ with $f^{\prime}(a)=$ $\beta(b)$.

The map α surjects by assumption, so there exists some $a \in A$ with $\alpha(a)=a^{\prime}$.

By commutativity of the diagram, $\beta(f(a))=\beta(b)$.

But β is injective by assumption, so this implies $f(a)=b$.

But then $b \in \operatorname{im}(f)$. By exactness at $B, \operatorname{im}(f)=\operatorname{ker}(g)$. Hence $c=g(b)=0$.

This concludes the proof.
5. We note that the restriction $\left.q\right|_{X \times\{0\}}$ is injective and (since $(X \times\{0\})$ is a closed saturated subset of the domain) is a quotient map, hence X_{0} is homeomorphic to $X \times\{0\} \cong X$. Similarly $\left.q\right|_{Y}$ is injective, and we can check it is a homeomorphism: Consider a closed subset $C \subseteq Y$. The preimage $f^{-1}(C)$ is closed in X, so $q^{-1}(q(C))=C \sqcup\left(f^{-1}(C) \times\{1\}\right)$ is closed in $Y \sqcup(X \times I)$. By the definition of the quotient topology, this implies $q(C) \subseteq q(Y)$ is closed in M_{f}, which implies $\left.q\right|_{Y}$ is a homeomorphism as claimed.
As in the hint, we first verify that $\left(M_{f}, X_{0}\right)$ is a good pair. This means we must check that X_{0} is a nonempty closed subspace that is a deformation retract of some neighborhood U in M_{f}. By construction, the preimage of X_{0} under the quotient map $q:(X \times[0,1]) \sqcup Y \rightarrow M_{f}$ is $X \times\{0\}$, which is nonempty and closed. Thus X_{0} is nonempty, and it is closed by definition of the quotient topology. Now, consider $U=q\left(X \times\left[0, \frac{1}{2}\right)\right)$ in M_{f}. Its full preimage under q is the open set $X \times\left[0, \frac{1}{2}\right)$, hence it is open in M_{f}. Consider the deformation retraction of $X \times\left[0, \frac{1}{2}\right)$ onto $X \times\{0\}$

$$
\begin{aligned}
F_{t}: X \times\left[0, \frac{1}{2}\right) & \longrightarrow X \times\left[0, \frac{1}{2}\right) \\
(x, s) & \longmapsto(x, s(1-t))
\end{aligned}
$$

At each time t, the composition $q \circ F_{t}: X \times\left[0, \frac{1}{2}\right) \rightarrow U$ is constant on fibres of q, hence this homotopy factors continuously through a map from U. Thus there is an induced homotopy $U \rightarrow U$ that deformation retracts U to X_{0}.
Next, we show that there is a homotopy equivalence $M_{f} \rightarrow Y$. Consider the deformation retraction of $X \times[0,1]$ onto $X \times\{1\}$,

$$
\begin{aligned}
G_{t}: X \times[0,1] & \longrightarrow X \times[0,1] \\
(x, s) & \longmapsto(x, s(1-t)+t)
\end{aligned}
$$

and extend G_{t} to a homotopy $(X \times[0,1]) \sqcup Y \rightarrow(X \times[0,1]) \sqcup Y$ by defining it to be the identity on Y at all times t. For each t, the homotopy is constant on equivalence classes of q. Hence it induces a deformation retraction G_{t}^{\prime} of M_{f} onto Y.
Now, observe that the following composite is the map f :

$$
\begin{aligned}
& X \xrightarrow[\cong]{\cong} X_{0} \xrightarrow{\imath} M_{f} \xrightarrow{G_{1}^{\prime}} Y \\
& x \longmapsto q(x, 0) \longmapsto q(x, 0) \longmapsto \longmapsto q(x, 1) \sim f(x)
\end{aligned}
$$

Since the first and third maps are homotopy equivalences, they induce isomorphisms on homology. Hence the map f induces an isomorphism on degree- i homology if and only if the inclusion t of X_{0} into M_{f} does.
Finally, we consider the long exact sequence of the pair $\left(M_{f}, X_{0}\right)$. Because this is a good pair, for all i we have isomorphisms

$$
\begin{gathered}
H_{i}\left(M_{f}, X_{0}\right) \cong \widetilde{H}_{i}\left(M_{f} / X_{0}\right)=\widetilde{H}_{i}\left(C_{f}\right) . \\
\left.\cdots \longrightarrow \widetilde{H}_{i}\left(X_{0}\right) \xrightarrow{i_{*}} \widetilde{H}_{i}\left(M_{f}\right) \longrightarrow H_{i+1}\left(M_{f}, X_{0}\right) \longrightarrow X_{0}\right) \longrightarrow \cdots \\
\downarrow \cong \\
\widetilde{H}_{i+1}\left(C_{f}\right)
\end{gathered}
$$

By exactness, the map \boldsymbol{t}_{*} is an isomorphism whenever $\widetilde{H}_{i+1}\left(C_{f}\right)$ and $\widetilde{H}_{i}\left(C_{f}\right)$ vanish. The result follows.

