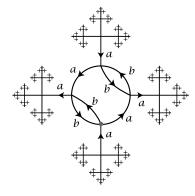
## Algebraic Topology QR Exam – Jan 2024

- 1. (a) State the definition of a CW complex, and its topology (the weak topology).
  - (b) Let X be a CW complex and  $A \subseteq X$  a nonempty CW subcomplex. Working directly from your definition, describe a CW complex structure on the quotient space X/A, and verify explicitly that the quotient topology on X/A agrees with the weak topology of your given CW complex structure.
- 2. (a) Let X be a path-connected, locally path-connected, and semi-locally simply connected space. Let  $p: (\widetilde{X}, \widetilde{v}) \to (X, v)$  be the covering space associated to a subgroup  $H \subseteq \pi_1(X, v)$ . For an element  $[\gamma] \in \pi_1(X, v)$ , let  $\widetilde{\gamma}$  denote the lift of  $\gamma$  to  $\widetilde{X}$  starting at  $\widetilde{v}$ . Show that  $[\gamma] \in \pi_1(X, v)$  is in the normalizer N(H) of H if and only if the lift  $\widetilde{\gamma}$  has endpoint  $\widetilde{w} := \widetilde{\gamma}(1)$  in the orbit of  $\widetilde{v}$  under the deck group of the cover p.
  - (b) Consider the wedge  $S^1 \vee S^1$  of circles *a* and *b* with wedge point *v*. Below is a (based) cover associated to a certain subgroup *H* of  $\pi_1(S^1 \vee S^1, v)$ . The covering map is specified by the edge labels and orientations, and a basepoint  $\tilde{v}$  is marked with a gray dot. Find a (not necessarily free) finite generating set for the normalizer N(H) of *H*, with very brief justification.



3. Fix  $g \ge 0$ . The closed orientable genus-*g* surface  $\Sigma_g$  is the boundary of a compact 3-dimensional manifold  $\mathbf{H}_g$  called a *genus-g handlebody*, as pictured for g = 3. [Image by Oleg Alexandrov]



The *doubled handlebody*  $\mathbf{D}_g$  is obtained by gluing two copies of  $\mathbf{H}_g$  along their boundary via the identity map. Concretely, for  $\mathbf{H} = \mathbf{H}' = \mathbf{H}_g$  and  $I : \mathbf{H} \to \mathbf{H}'$  the the identity map, the space  $\mathbf{D}_g$  is the quotient of the disjoint union  $\mathbf{H}' \sqcup \mathbf{H}$  by the equivalence relation  $I(x) \sim x$  for all  $x \in \partial \mathbf{H} = \Sigma_g$ .

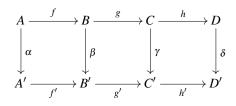
- (a) Compute  $\pi_1(\mathbf{D}_g)$ .
- (b) Compute  $\widetilde{H}_*(\mathbf{D}_g)$ .

For this question, you can assert descriptions of the fundamental groups and homology groups of  $\Sigma_g$  and  $\mathbf{H}_g$  without proof. Please justify the other steps in your computation.

4. The following proposition is a step in the proof of the Five Lemma. Perform a diagram chase to prove this proposition.

Proposition. Suppose that in the following commutative diagram of abelian groups,

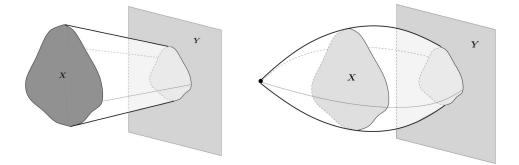
- Both rows are exact.
- The maps  $\beta$  and  $\delta$  are injective.
- The map  $\alpha$  is surjective.



Then the map  $\gamma$  is injective.

5. Let  $f: X \to Y$  be a continuous map of nonempty topological spaces. Let [0, 1] denote the closed interval. The *mapping cylinder*  $M_f$  of f is obtained by gluing  $X \times [0, 1]$  to Y via f in the following sense: it is the quotient of the disjoint union of  $X \times [0, 1]$  and Y by the equivalence relation generated by  $(x, 1) \sim f(x)$ . Let  $X_0$  denote the image of  $X \times \{0\}$  in  $M_f$ . The *mapping cone*  $C_f$  of f is the quotient of  $M_f$  that collapses  $X_0$  to a point.

The spaces  $M_f$  and  $C_f$ , respectively, are illustrated below. [Images by Fernando Muro]



Fix  $k \ge 0$  in  $\mathbb{Z}$ . Prove that the induced map  $f_*: H_i(X) \to H_i(Y)$  is an isomorphism for  $0 \le i \le k$  if  $\widetilde{H}_i(C_f) = 0$  for  $0 \le i \le k+1$ .

*Hint:* First verify that  $(M_f, X_0)$  is a good pair.