
Differential Topology QR Exam – Tuesday, January 4, 2022

All manifolds are assumed to be smooth. Ωk(M) denotes the space of smooth k-
forms and X(M) the space of smooth vector fields on the manifold M .

All items will be graded independently of each other.

Problem 1. Define F : S2 → R4 by F (x, y, z) = (x2 − y2, xy, xz, yz). Show that F
induces a smooth embedding G : RP2 → R4. Note: After you explain how a map
G is obtained, to save time, you do not have to prove in detail that it is injective.

Problem 2. Let π : M → B be a surjective submersion.

1. Let us call a vector field V ∈ X(M) vertical if and only if dπp(Vp) = 0 for all
p ∈ M . Show that if a given X ∈ X(M) is π-related to some field Y ∈ X(B),
then for all vertical fields V the commutator [X, V ] is vertical.

2. Show that if X ∈ X(M) has the following property:

∀b ∈ B, ∀p, q ∈ π−1(b) dπp(Xp) = dπq(Xq) (♥)

then X is π-related to a unique smooth field Y ∈ X(B).

Problem 3. Let P =

{
p =

(
a b
0 a−1

) ∣∣∣∣ a > 0, b ∈ R
}

.

1. Show that P is a Lie subgroup of GL(2,R), and identify its Lie algebra TIP
(where I is the identity matrix).

2. Let F : SO(2) × P → SL(2,R) be given by F (k, p) = kp (matrix multiplica-
tion). Obtain a description of dF(k,p) that allows you to show that F is a local
diffeomorphism. (F is in fact bijective and therefore a diffeomorphism, but
you do not have to prove that.)

Problem 4. Let X ∈ X(M) be a complete vector field, and ∀t ∈ R let θt : M →M
be the time t map of its flow. Let ω ∈ Ωk(M).

1. Recall the definition of LXω, and show that

∀t ∈ R θ∗tω = ω (♦)

is equivalent to LXω = 0.

2. Take now M = Rn, ω = dx1∧· · ·∧dxn the standard volume form, and X = ∇f
for some f ∈ C∞(Rn) (the usual gradient field of f). Derive a condition on f
equivalent to (♦).

–over please–



Problem 5. Let F : M → N be a smooth map between compact, connected,
oriented manifolds without boundary, of the same dimension n.

1. Let q ∈ N be a regular value of F . Show that ∃V ⊂ N neighborhood of q and
∀p ∈ F−1(q) ∃ Up ⊂M neighborhood of p such that (i) F−1(V ) =

∐
p∈F−1(q) Up

(disjoint union) and (ii) ∀p ∈ F−1(q) the restriction F |Up is a diffeomorphism
from Up onto V .

2. Define ∀p ∈ F−1(q)

(−1)p :=

{
+1 if dFp is orientation preserving,

−1 if dFp is orientation reversing,

and let δ(F ) =
∑

p∈F−1(q)(−1)p ∈ Z.

Construct ν ∈ Ωn(N) supported in the neighborhood V of part (1) and such
that

∫
N
ν = 1, and prove that ∫

M

F ∗ν = δ(F ).

3. Given that Hn(M) ∼= R ∼= Hn(N), deduce from (2) that the integer δ(F ) is
independent of the choice of q.

SOLUTIONS

Problem 1. Let π : S2 → RP2 be the quotient map of the equivalence relation that
identifies antipodal points of S2. Since ∀p ∈ S2 F (−p) = F (p), there is a unique
map G : RP2 → R4 such that F = G ◦ π. By the universal property of quotient
maps G is continuous. Moreover, the differentiable structure of RP2 is such that π is
a local diffeomorphism. Therefore G is smooth because F is, as F is the restriction
to S2 of the smooth map F̃ : R3 → R4 given by the same expression as F .

The main point is that, since RP2 is compact, to prove that G is an embedding
it suffices to prove that G is an injective immersion.

–Injective: The first two components of F determine x2 − y2 + 2
√
−1xy = (x+√

−1y)2, and therefore determine ±(x, y). Given this information, the last two
components of F determine ±(x, y, z), which correspond to a single point in RP2.

– Immersion: Using again that π is a local diffeomorphism, it suffices to show
that ∀p ∈ S2 dFp : TpS

2 → R4 is injective. If p = (x, y, z), the Jacobian matrix of

F̃ at p is J =


2x −2y 0
y x 0
z 0 x
0 z y

. Since TpS
2 is the orthogonal complement of the line

Rp, the kernel of dFp is the kernel of the augmented matrix

J̃ =


2x −2y 0
y x 0
z 0 x
0 z y
x y z





The 3 × 3 principal minor of J is x(2x2 + 2y2), which is non-zero if x 6= 0, and
therefore J (and therefore dFp) has zero kernel if x 6= 0. One can check by inspection
that if x = 0 and y 6= 0, the rank of J is still three. Finally, if x = 0 = y, then
z = ±1 and one can check that the kernel of J̃ is zero. Thus in every case dFp is
injective.

Problem 2. (1) Let Y ∈ X(B) that is π-related to X, and let V be a vertical field.
The definition of vecrtical field is equivalent to saying that V is π-related to the zero
field on B. Therefore [X, V ] is related to [Y, 0] = 0, i.e. [X, V ] is vertical.

There is a more direct argument using normal form coordinates, in which π(x1, . . . , xn) =
(x1, . . . , x`). Then if Y =

∑`
j=1 a

j∂xj X is necessarily of the form X =
∑`

j=1 a
j∂xj +∑n

i=`+1 b
i∂xi , and V =

∑n
i=`+1 v

i∂xi . The commutator [X, V ] is vertical because the
functions aj do not depend on (x`+1, . . . , xn).

(2) Since π is surjective, one can define a (possibly rough) field Y on B by:
∀b ∈ B, Yb = dπp(Xp) for some (any) p ∈ π−1(b). To prove that Y is smooth near
b ∈ B, introduce normal form coordinates in a neighborhood U of some p ∈ π−1(b)
and in a neighborhood of b, that is, coordinates in which π takes the form

π(x1, . . . , xn) = (x1, . . . , x`),

n = dim(M) and ` = dim(B). Let X =
∑n

i=1 a
i(x)∂xi . Then, at each point in

U , dπ(X) =
∑`

i=1 a
i(x)∂xi , and condition (♥) means that the coefficient functions

ai for 1 ≤ i ≤ ` are independent of (x`+1, . . . , xn). Thus in these coordinates
Y =

∑`
i=1 a

i(x1, . . . , x`)∂xi , which shows that Y is smooth because the ai are smooth.

Problem 3. (1) Identify GL(2,R) with an open set of R4 by

GL(2,R) 3
(
x y
z w

)
7→ (x, y, z, w) ∈ R4.

Then P = F−1(0) where F (x, y, z, w) = (z, xw − 1). The Jacobian of F is

F ′(x, y, z, w) =

(
0 0 1 0
w 0 0 x

)
which has rank two if xw = 1. By the regular value theorem P is a submanifold,
and TIP is the kernel of the matrix F ′(1, 0, 0, 1), which corresponds to the matrices

TIP =

{
ξ =

(
u v
0 −u

)
,

∣∣∣∣u, v ∈ R
}
.

In particular P has dimension two.
(2) Fix (k, p) ∈ SO(2,R) × P and let γ : (−ε, ε) → SO(2,R) × P be a smooth

curve such that γ(0) = (k, p). If we write γ = (γ1, γ2) for the components of γ, then
we want to find an expression for

dF(k,p)(γ̇1(0), γ̇2(0)) =
d

dt
γ1(t)γ2(t)|t=0 = γ̇1(0)p+ kγ̇2(0).



Using part (1), the fact that the Lie algebra of SO(2) consists of the 2 × 2 skew-
symmetric matrices, and using left and right translations, we can write

γ̇1(0) = k

(
0 w
−w 0

)
and γ̇2(0) =

(
u v
0 −u

)
p

for some unique u, v, w ∈ R. In conclusion

dF(k,p)(γ̇1(0), γ̇2(0)) = k

(
u v + w
−w −u

)
p.

Conversely, given u, v, w ∈ R arbitrary there exists a curve γ such that this holds.
From this expression we see that dF(k,p) has zero kernel, and since the dimension of
SL(2,R) is three dF(k,p) is an isomorphism, and by the implicit function theorem F
is a local diffeomorphism.

Problem 4. (1) LXω = d
dt
θ∗tω|t=0. From this it follows that (♦) implies that

LXω = 0.
On the other hand, ∀t ∈ R

d

dt
θ∗tω =

d

ds
θ∗s+tω|s=0 =

d

ds
θ∗s (θ∗tω) |s=0 = LXθ

∗
tω = θ∗tLXω

where we have used the group law plus the fact that (θt)∗X = X. So if LXω = 0
then θ∗tω is constant with respect to t, and since it equals ω at t = 0 we are done.

(2) Using Cartan’s M-formula and since dω = 0, we obtain for any field X that
LXω = dιXω. One computes that

ι∇fdx
1 ∧ · · · ∧ dxn =

n∑
i=1

∂f

∂xi
(−1)i+1dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

The condition on f is that the exterior derivative of this (n− 1) form is zero. But

d
(
ι∇fdx

1 ∧ · · · ∧ dxn
)

=
n∑

i,j=1

∂2f

∂xj∂xi
(−1)i+1dxj ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

= ∆f dx1 ∧ · · · ∧ dxn, ∆f =
n∑

i=1

∂2f

∂(xi)2
.

So the condition is ∆f = 0.

Problem 5. (1) Since q is a regular value, F−1(q) is a submanifold of dimension
zero. Since M is compact, F−1(q) is a finite set of points, {p1, . . . , pK}. By the
implicit function theorem, for each i = 1, . . . , K there exist neighborhoods Wi of
pi and Vi of q such that F |Wi

: Wi → Vi is a diffeomorphism. Shrinking these
neighborhoods if necessary, WOLOG the Wi are pair-wise disjoint. Now let V =
∩Ki=1Vi, and let Ui the inverse image of V under F |Wi

: Wi → Vi.
(2) Let (y1, . . . yn) be a positive coordinate system of N defined in a neighbor-

hood V0 of q contained in V , and let χ ∈ C∞0 (V0) be a bump function. Note that



∫
V0
χdy1 ∧ · · · ∧ dyn > 0, so there exists c ∈ R such that

∫
V0
cχdy1 ∧ · · · ∧ dyn = 1.

Now let ν ∈ Ωn be identically zero outside of V0 and equal to cχdy1 ∧ · · · ∧ dyn on
V0.

Since for each i = 1, . . . , K F restricts to a diffeomorphism Ui → V , taking into
account orientations one has∫

Ui

F ∗ν = (−1)pi
∫
V0

ν = (−1)pi .

Summing over i we get
∫
M
F ∗ν = δ(F ), where we have used that F ∗ν is supported

in F−1(V ) =
∐
Ui.

(3) If q′ is another regular value of F , let V ′, U ′i and ν ′ be as above but associated
with q′. Since the top-degree cohomology of N is one-dimensional, ∃c ∈ R and
ω ∈ Ωn−1(N) such that ν ′ = cν + dω. (The class [ν] cannot be zero since

∫
ν = 1.)

Integrating both sides and using Stokes’ theorem, we see that c = 1 and∫
M

F ∗ν ′ =

∫
M

F ∗ν + d (F ∗ω) =

∫
M

F ∗ν.


