Differential Topology QR Exam – Tuesday, January 4, 2022

All manifolds are assumed to be smooth. $\Omega^k(M)$ denotes the space of smooth kforms and $\mathfrak{X}(M)$ the space of smooth vector fields on the manifold M.

All items will be graded independently of each other.

Problem 1. Define $F: S^2 \to \mathbb{R}^4$ by $F(x, y, z) = (x^2 - y^2, xy, xz, yz)$. Show that F induces a smooth embedding $G: \mathbb{RP}^2 \to \mathbb{R}^4$. Note: After you explain how a map G is obtained, to save time, you do not have to prove in detail that it is injective.

Problem 2. Let $\pi : M \to B$ be a surjective submersion.

- 1. Let us call a vector field $V \in \mathfrak{X}(M)$ vertical if and only if $d\pi_p(V_p) = 0$ for all $p \in M$. Show that if a given $X \in \mathfrak{X}(M)$ is π -related to some field $Y \in \mathfrak{X}(B)$, then for all vertical fields V the commutator [X, V] is vertical.
- 2. Show that if $X \in \mathfrak{X}(M)$ has the following property:

$$\forall b \in B, \ \forall p, q \in \pi^{-1}(b) \qquad d\pi_p(X_p) = d\pi_q(X_q) \tag{\heartsuit}$$

then X is π -related to a unique *smooth* field $Y \in \mathfrak{X}(B)$.

Problem 3. Let
$$P = \left\{ p = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a > 0, b \in \mathbb{R} \right\}.$$

- 1. Show that P is a Lie subgroup of $GL(2, \mathbb{R})$, and identify its Lie algebra $T_I P$ (where I is the identity matrix).
- 2. Let $F : SO(2) \times P \to SL(2, \mathbb{R})$ be given by F(k, p) = kp (matrix multiplication). Obtain a description of $dF_{(k,p)}$ that allows you to show that F is a local diffeomorphism. (F is in fact bijective and therefore a diffeomorphism, but you do not have to prove that.)

Problem 4. Let $X \in \mathfrak{X}(M)$ be a complete vector field, and $\forall t \in \mathbb{R}$ let $\theta_t : M \to M$ be the time t map of its flow. Let $\omega \in \Omega^k(M)$.

1. Recall the definition of $\mathcal{L}_X \omega$, and show that

$$\forall t \in \mathbb{R} \qquad \theta_t^* \omega = \omega \tag{(\diamondsuit)}$$

is equivalent to $\mathcal{L}_X \omega = 0$.

2. Take now $M = \mathbb{R}^n$, $\omega = dx^1 \wedge \cdots \wedge dx^n$ the standard volume form, and $X = \nabla f$ for some $f \in C^{\infty}(\mathbb{R}^n)$ (the usual gradient field of f). Derive a condition on f equivalent to (\diamondsuit) .

Problem 5. Let $F : M \to N$ be a smooth map between compact, connected, oriented manifolds without boundary, of the same dimension n.

- 1. Let $q \in N$ be a regular value of F. Show that $\exists V \subset N$ neighborhood of q and $\forall p \in F^{-1}(q) \exists U_p \subset M$ neighborhood of p such that (i) $F^{-1}(V) = \coprod_{p \in F^{-1}(q)} U_p$ (disjoint union) and (ii) $\forall p \in F^{-1}(q)$ the restriction $F|_{U_p}$ is a diffeomorphism from U_p onto V.
- 2. Define $\forall p \in F^{-1}(q)$

$$(-1)^p := \begin{cases} +1 & \text{if } dF_p \text{ is orientation preserving,} \\ -1 & \text{if } dF_p \text{ is orientation reversing,} \end{cases}$$

and let $\delta(F) = \sum_{p \in F^{-1}(q)} (-1)^p \in \mathbb{Z}.$

Construct $\nu \in \Omega^n(N)$ supported in the neighborhood V of part (1) and such that $\int_N \nu = 1$, and prove that

$$\int_M F^*\nu = \delta(F)$$

3. Given that $H^n(M) \cong \mathbb{R} \cong H^n(N)$, deduce from (2) that the integer $\delta(F)$ is independent of the choice of q.

SOLUTIONS

Problem 1. Let $\pi: S^2 \to \mathbb{RP}^2$ be the quotient map of the equivalence relation that identifies antipodal points of S^2 . Since $\forall p \in S^2$ F(-p) = F(p), there is a unique map $G: \mathbb{RP}^2 \to \mathbb{R}^4$ such that $F = G \circ \pi$. By the universal property of quotient maps G is continuous. Moreover, the differentiable structure of \mathbb{RP}^2 is such that π is a local diffeomorphism. Therefore G is smooth because F is, as F is the restriction to S^2 of the smooth map $\tilde{F}: \mathbb{R}^3 \to \mathbb{R}^4$ given by the same expression as F.

The main point is that, since \mathbb{RP}^2 is compact, to prove that G is an embedding it suffices to prove that G is an injective immersion.

-Injective: The first two components of F determine $x^2 - y^2 + 2\sqrt{-1}xy = (x + \sqrt{-1}y)^2$, and therefore determine $\pm(x, y)$. Given this information, the last two components of F determine $\pm(x, y, z)$, which correspond to a single point in \mathbb{RP}^2 .

- Immersion: Using again that π is a local diffeomorphism, it suffices to show that $\forall p \in S^2 \ dF_p : T_p S^2 \to \mathbb{R}^4$ is injective. If p = (x, y, z), the Jacobian matrix of $\begin{pmatrix} 2x & -2y & 0 \end{pmatrix}$

 $\widetilde{F} \text{ at } p \text{ is } J = \begin{pmatrix} 2x & -2y & 0\\ y & x & 0\\ z & 0 & x\\ 0 & z & y \end{pmatrix}. \text{ Since } T_p S^2 \text{ is the orthogonal complement of the line}$

 $\mathbb{R}p$, the kernel of dF_p is the kernel of the augmented matrix

$$\tilde{J} = \begin{pmatrix} 2x & -2y & 0\\ y & x & 0\\ z & 0 & x\\ 0 & z & y\\ x & y & z \end{pmatrix}$$

The 3 × 3 principal minor of J is $x(2x^2 + 2y^2)$, which is non-zero if $x \neq 0$, and therefore J (and therefore dF_p) has zero kernel if $x \neq 0$. One can check by inspection that if x = 0 and $y \neq 0$, the rank of J is still three. Finally, if x = 0 = y, then $z = \pm 1$ and one can check that the kernel of \tilde{J} is zero. Thus in every case dF_p is injective.

Problem 2. (1) Let $Y \in \mathfrak{X}(B)$ that is π -related to X, and let V be a vertical field. The definition of vectrical field is equivalent to saying that V is π -related to the zero field on B. Therefore [X, V] is related to [Y, 0] = 0, i.e. [X, V] is vertical.

There is a more direct argument using normal form coordinates, in which $\pi(x^1, \ldots, x^n) = (x^1, \ldots, x^\ell)$. Then if $Y = \sum_{j=1}^{\ell} a^j \partial_{x^j} X$ is necessarily of the form $X = \sum_{j=1}^{\ell} a^j \partial_{x^j} + \sum_{i=\ell+1}^{n} b^i \partial_{x^i}$, and $V = \sum_{i=\ell+1}^{n} v^i \partial_{x^i}$. The commutator [X, V] is vertical because the functions a^j do not depend on $(x^{\ell+1}, \ldots, x^n)$.

(2) Since π is surjective, one can define a (possibly rough) field Y on B by: $\forall b \in B, Y_b = d\pi_p(X_p)$ for some (any) $p \in \pi^{-1}(b)$. To prove that Y is smooth near $b \in B$, introduce normal form coordinates in a neighborhood U of some $p \in \pi^{-1}(b)$ and in a neighborhood of b, that is, coordinates in which π takes the form

$$\pi(x^1,\ldots,x^n) = (x^1,\ldots,x^\ell),$$

 $n = \dim(M)$ and $\ell = \dim(B)$. Let $X = \sum_{i=1}^{n} a^{i}(x)\partial_{x^{i}}$. Then, at each point in $U, d\pi(X) = \sum_{i=1}^{\ell} a^{i}(x)\partial_{x^{i}}$, and condition (\heartsuit) means that the coefficient functions a^{i} for $1 \leq i \leq \ell$ are independent of $(x^{\ell+1}, \ldots, x^{n})$. Thus in these coordinates $Y = \sum_{i=1}^{\ell} a^{i}(x^{1}, \ldots, x^{\ell})\partial_{x^{i}}$, which shows that Y is smooth because the a^{i} are smooth.

Problem 3. (1) Identify $GL(2,\mathbb{R})$ with an open set of \mathbb{R}^4 by

$$\operatorname{GL}(2,\mathbb{R}) \ni \begin{pmatrix} x & y \\ z & w \end{pmatrix} \mapsto (x,y,z,w) \in \mathbb{R}^4.$$

Then $P = F^{-1}(0)$ where F(x, y, z, w) = (z, xw - 1). The Jacobian of F is

$$F'(x, y, z, w) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ w & 0 & 0 & x \end{pmatrix}$$

which has rank two if xw = 1. By the regular value theorem P is a submanifold, and T_IP is the kernel of the matrix F'(1,0,0,1), which corresponds to the matrices

$$T_I P = \left\{ \xi = \begin{pmatrix} u & v \\ 0 & -u \end{pmatrix}, \left| u, v \in \mathbb{R} \right\}.$$

In particular P has dimension two.

(2) Fix $(k, p) \in SO(2, \mathbb{R}) \times P$ and let $\gamma : (-\epsilon, \epsilon) \to SO(2, \mathbb{R}) \times P$ be a smooth curve such that $\gamma(0) = (k, p)$. If we write $\gamma = (\gamma_1, \gamma_2)$ for the components of γ , then we want to find an expression for

$$dF_{(k,p)}(\dot{\gamma}_1(0), \dot{\gamma}_2(0)) = \frac{d}{dt}\gamma_1(t)\gamma_2(t)|_{t=0} = \dot{\gamma}_1(0)p + k\dot{\gamma}_2(0).$$

Using part (1), the fact that the Lie algebra of SO(2) consists of the 2 × 2 skewsymmetric matrices, and using left and right translations, we can write

$$\dot{\gamma}_1(0) = k \begin{pmatrix} 0 & w \\ -w & 0 \end{pmatrix}$$
 and $\dot{\gamma}_2(0) = \begin{pmatrix} u & v \\ 0 & -u \end{pmatrix} p$

for some unique $u, v, w \in \mathbb{R}$. In conclusion

$$dF_{(k,p)}(\dot{\gamma}_1(0),\dot{\gamma}_2(0)) = k \begin{pmatrix} u & v+w \\ -w & -u \end{pmatrix} p.$$

Conversely, given $u, v, w \in \mathbb{R}$ arbitrary there exists a curve γ such that this holds. From this expression we see that $dF_{(k,p)}$ has zero kernel, and since the dimension of $SL(2,\mathbb{R})$ is three $dF_{(k,p)}$ is an isomorphism, and by the implicit function theorem F is a local diffeomorphism.

Problem 4. (1) $\mathcal{L}_X \omega = \frac{d}{dt} \theta_t^* \omega|_{t=0}$. From this it follows that (\diamondsuit) implies that $\mathcal{L}_X \omega = 0$.

On the other hand, $\forall t \in \mathbb{R}$

$$\frac{d}{dt}\theta_t^*\omega = \frac{d}{ds}\theta_{s+t}^*\omega|_{s=0} = \frac{d}{ds}\theta_s^*\left(\theta_t^*\omega\right)|_{s=0} = \mathcal{L}_X\theta_t^*\omega = \theta_t^*\mathcal{L}_X\omega$$

where we have used the group law plus the fact that $(\theta_t)_*X = X$. So if $\mathcal{L}_X \omega = 0$ then $\theta_t^*\omega$ is constant with respect to t, and since it equals ω at t = 0 we are done.

(2) Using Cartan's M-formula and since $d\omega = 0$, we obtain for any field X that $\mathcal{L}_X \omega = d\iota_X \omega$. One computes that

$$\iota_{\nabla f} dx^1 \wedge \dots \wedge dx^n = \sum_{i=1}^n \frac{\partial f}{\partial x^i} (-1)^{i+1} dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n.$$

The condition on f is that the exterior derivative of this (n-1) form is zero. But

$$d\left(\iota_{\nabla f}dx^{1}\wedge\cdots\wedge dx^{n}\right) = \sum_{i,j=1}^{n} \frac{\partial^{2}f}{\partial x^{j}\partial x^{i}}(-1)^{i+1}dx^{j}\wedge dx^{1}\wedge\cdots\wedge dx^{i}\wedge\cdots\wedge dx^{n}$$
$$= \Delta f\,dx^{1}\wedge\cdots\wedge dx^{n}, \qquad \Delta f = \sum_{i=1}^{n} \frac{\partial^{2}f}{\partial (x^{i})^{2}}.$$

So the condition is $\Delta f = 0$.

Problem 5. (1) Since q is a regular value, $F^{-1}(q)$ is a submanifold of dimension zero. Since M is compact, $F^{-1}(q)$ is a finite set of points, $\{p_1, \ldots, p_K\}$. By the implicit function theorem, for each $i = 1, \ldots, K$ there exist neighborhoods W_i of p_i and V_i of q such that $F|_{W_i} : W_i \to V_i$ is a diffeomorphism. Shrinking these neighborhoods if necessary, WOLOG the W_i are pair-wise disjoint. Now let $V = \bigcap_{i=1}^{K} V_i$, and let U_i the inverse image of V under $F|_{W_i} : W_i \to V_i$.

(2) Let $(y^1, \ldots y^n)$ be a positive coordinate system of N defined in a neighborhood V_0 of q contained in V, and let $\chi \in C_0^{\infty}(V_0)$ be a bump function. Note that

 $\int_{V_0} \chi dy^1 \wedge \cdots \wedge dy^n > 0$, so there exists $c \in \mathbb{R}$ such that $\int_{V_0} c\chi dy^1 \wedge \cdots \wedge dy^n = 1$. Now let $\nu \in \Omega^n$ be identically zero outside of V_0 and equal to $c\chi dy^1 \wedge \cdots \wedge dy^n$ on V_0 .

Since for each i = 1, ..., K F restricts to a diffeomorphism $U_i \to V$, taking into account orientations one has

$$\int_{U_i} F^* \nu = (-1)^{p_i} \int_{V_0} \nu = (-1)^{p_i}.$$

Summing over *i* we get $\int_M F^* \nu = \delta(F)$, where we have used that $F^* \nu$ is supported in $F^{-1}(V) = \coprod U_i$.

(3) If q' is another regular value of F, let V', U'_i and ν' be as above but associated with q'. Since the top-degree cohomology of N is one-dimensional, $\exists c \in \mathbb{R}$ and $\omega \in \Omega^{n-1}(N)$ such that $\nu' = c\nu + d\omega$. (The class $[\nu]$ cannot be zero since $\int \nu = 1$.) Integrating both sides and using Stokes' theorem, we see that c = 1 and

$$\int_M F^*\nu' = \int_M F^*\nu + d\left(F^*\omega\right) = \int_M F^*\nu.$$