## General and Differential Topology QR Exam - May 4, 2023

All manifolds, vector fields, and differential forms are assumed to be smooth $\left(C^{\infty}\right)$.

## SOLUTIONS

Problem 1. Let $M=\left\{(w, x, y, z) \in \mathbb{R}^{4} \mid w^{2}+x^{2}=y^{2}+z^{2}=1\right\}$.
(a) Show that $M$ is a submanifold of $\mathbb{R}^{4}$.
(b) Define a diffeomorphism $\pi: M \rightarrow M$ by $\pi(w, x, y, z)=(-y,-z, w, x)$. Let $G$ be the group generated by this diffeomorphism. Show that the orbit space $M / G$ is a manifold.
(c) Is $M / G$ orientable?

## Solution.

(a) Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be given by $f(w, x, y, z)=\left(w^{2}+x^{2}, y^{2}+z^{2}\right)$. We can easily see that $(1,1)$ is a regular value of $f$ since we cannot simultaneously have $2 w=2 x=0, w^{2}+x^{2}=1$ or $2 y=2 z=0, y^{2}+z^{2}=1$, so $f^{-1}(1,1)$ is a submanifold.
(b) We observe that $\pi^{2}(w, x, y, z)=(-w,-x,-y,-z)$, so $\pi$ has order 4 and $\pi^{2}$ has no fixed points, which implies that $G$ acts freely on $M$. Since $G$ is a finite group acting via smooth maps, this implies that $M / G$ is a manifold.
(c) Let $\alpha=(-x d w+w d x) \wedge(-z d y+y d z)$, a volume form for $M$. We compute that $\pi^{*} \alpha=-\alpha$. Since $M$ is connected, this implies that $M / G$ is not orientable.

Problem 2. Let $n \geq 2$. Let $X$ be the set of real $n \times n$ matrices $A$ satisfying $A+A^{t}=0$, where $A^{t}$ is the transpose of $A$.
(a) Is $X$ a Lie algebra?
(b) Let $\mathrm{GL}(n)$ be the group of invertible $n \times n$ matrices. Is $X \cap \operatorname{GL}(n)$ a Lie group?
(c) Let $M(n)$ be the set of all real $n \times n$ matrices. Define a function $f: X \rightarrow M(n)$ by $f(A)=$ $e^{A}-e^{-A}$. Describe the image under $f$ of a small open neighborhood of the zero matrix.

## Solution.

(a) Yes - we can either compute that it is the Lie algebra of $O(n)$ or check that if $A, B \in X$ then

$$
[A, B]+[A, B]^{t}=A B-B A+B^{t} A^{t}-A^{t} B^{t}=A B-B A+B A-A B=0
$$

(b) No - for instance it does not contain the identity matrix, so it is not even a group.
(c) We first observe that

$$
f(A)^{t}=e^{A^{t}}-e^{-A^{t}}=e^{-A}-e^{A}=-f(A)
$$

so $f$ maps $X$ into itself. We next compute the map induced by $f$ on tangent spaces at zero: $d f(B)$ is the linear part in $t$ of $f(t B)=2 t B+O\left(t^{3}\right)$, so $d f(B)=2 B$. Thus $f: X \rightarrow X$ is regular at zero and hence maps a small open neighborhood of the zero matrix in $X$ to a small open neighborhood of the zero matrix in $X$.

Problem 3. Let $\alpha$ be a nonvanishing 1-form on a manifold $M$, so for any point $q \in M$, ker $\alpha_{q}$ is a codimension 1 subspace of the tangent space $T_{q} M$. Assume that $f$ is a nonvanishing smooth function on $M$ such that

$$
d(\alpha)=\frac{d f}{f} \wedge \alpha
$$

Prove that for any $p \in M$, there is a regular submanifold $S$ of $M$ such that $p \in S$ and $T_{q} S=\operatorname{ker} \alpha_{q}$ for all $q \in S$.

Solution. We first observe if we had $\alpha=d h$ for some smooth function $h$ on $M$ without then we would be done, since we are given that $\alpha$ is nonvanishing and hence $h$ has no critical points and we could then take $S=h^{-1}(h(p))$ for each $p \in S$. In fact, we only need this to be true in a neighborhood of each point $p$. By the Poincaré Lemma, it would thus be sufficient if we knew that $d \alpha=0$.

But this isn't quite what we are given, so we need to be a little more general. In fact, the same argument gives that we are happy if $\alpha=g d h$ for some $g, h$ in a neighborhood of every point, and hence by the Poincaré Lemma we just need that

$$
d\left(\frac{1}{g} \alpha\right)=0 .
$$

But this is exactly what we are given with $g=f$, so we are done.
Problem 4. Let $X$ be a complete vector field on a manifold $M$, and let $\alpha \in \Omega^{k}(M)$ be a $k$-form.
(a) Show that the following two conditions on the pair $(X, \alpha)$ are equivalent:

- the Lie derivative $\mathcal{L}_{X} \alpha$ is identically zero;
- for all $t \in \mathbb{R}, \theta_{t}^{*} \alpha=\alpha$, where $\theta_{t}: M \rightarrow M$ is the time $t$ map of the flow along $X$.
(b) Suppose that $M=\mathbb{R}^{3}, \alpha=d x \wedge d y \wedge d z$, and

$$
X=a x(y-z) \frac{\partial}{\partial x}+b y(z-x) \frac{\partial}{\partial y}+c z(x-y) \frac{\partial}{\partial z}
$$

for some $a, b, c \in \mathbb{R}$. For which $a, b, c$ is it the case that $(X, \alpha)$ satisfies the conditions of the previous part?

## Solution.

(a) Recall that $\mathcal{L}_{X} \alpha$ is defined as the derivative with respect to $t$ of $\theta_{t}^{*} \alpha$ at $t=0$. This immediately gives that the second condition implies the first. In the other direction, we observe that for any $s \in \mathbb{R}$ we have

$$
\left[\frac{d}{d t} \theta_{t}^{*} \alpha\right]_{t=s}=\left[\frac{d}{d t} \theta_{s}^{*} \theta_{t}^{*} \alpha\right]_{t=0}=0 .
$$

(b) We know (e.g. by Cartan's magic formula) that for a volume form $\alpha, \mathcal{L}_{X} \alpha=d\left(\iota_{X} \alpha\right)$. Computing in this case gives

$$
\mathcal{L}_{X} \alpha=(a(y-z)+b(z-x)+c(x-y)) d x \wedge d y \wedge d z
$$

which is 0 exactly when $a=b=c$.

Problem 5. Let $M$ be a compact manifold of positive dimension. Prove that there exists a vector field $X$ on $M$ such that for every nonempty open set $U$ of $M, X$ is not identically zero on $U$.

Solution. Note that on any chart for $M$ we have a vector field that is not identically zero on any nonempty open subset (by taking $d x_{1}$ ). Since $M$ is compact, we can cover it by finitely many charts $U_{1}, \ldots, U_{n}$ with corresponding vector fields $X_{1}, \ldots, X_{n}$ as above. Let $f_{1}, \ldots, f_{n}$ be a partition of unity subordinate to this cover. Then $f_{1} X_{1}, \ldots, f_{n} X_{n}$ are vector fields on $M$ such that for every nonempty open subset, at least one of the vector fields is not identically zero.

We claim that some linear combination $X=c_{1} f_{1} X_{1}+\cdots+c_{n} f_{n} X_{n}$ will have the desired property, for suitable constants $c_{1}, \ldots, c_{n} \in \mathbb{R}$. Indeed, we only need to check the property on a countable base for the topology of $M$. On each open set in this base, $X$ will be identically zero only for $\left(c_{1}, \ldots, c_{n}\right)$ belonging to some proper linear subspace of $\mathbb{R}^{n}$. Since the complement of countably many proper linear subspaces in $\mathbb{R}^{n}$ is nonempty, we are done.

