THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Algebraic Topology

January 2023

1. Let Z_n be the quotient of the unit disk $\{z \in \mathbb{C} \mid |z| \leq 1\}$ by the equivalence relation generated by $z \sim e^{2\pi i/n} z$ when |z| = 1, with the quotient topology. For which values of $n = \{1, 2, 3, \ldots\}$ is Z_n a topological manifold without boundary (i.e. every point $u \in Z_n$ has a neighborhood homeomorphic to \mathbb{R}^k for some k)?

Solution: The answer is for n = 2 only. For n = 1 we have D^2 , which has boundary, for n > 2, at a point |z| = 1, Z_n is locally homeomorphic to the suspension Qof the wedge of n copies of [0,1) with base point 0. Thus, $H_2(Z_n, Z_n \setminus \{z\}) \cong$ $H_1(Q \setminus \{(0,0)\}) = \mathbb{Z}^{n-1}$, so it is not locally homeomorphic at z to a Euclidean space.

2. Let a subroup G of the free group F(a, b, c) on three elements a, b, c be generated by a^2, b^2, c^2 and the six words expressed by permutations of the letters a, b, c. Find a set of free generators of G. Is G a normal subgroup of F(a, b, c)?

Solution: The "casting out" technique for drawing the covering of $\bigvee_{\{a,b,c\}} S^1$ corresponding to G yields a complete graph on 4 vertices, with edges doubled up. Thus, G has 9 free generators. It is regular covering, thus the subgroup is normal (the quotient is $\mathbb{Z}/2 \times \mathbb{Z}/2$).

3. A wedge sum of two non-empty spaces X, Y with specified points $x \in X, y \in Y$ is obtained as the quotient of the disjoint union $X \amalg Y$ by the equivalence relation generated by $x \sim y$ (with quotient topology). Describe the universal cover of the wedge sum of S^2 and $S^1 \times S^1$.

Solution: The union of the z = -1 plane in \mathbb{R}^3 and shifts of the unit sphere by $\mathbb{Z}a \times \mathbb{Z}b \times \{0\}$ with a, b > 2 is one description.

- 4. Let $n \in \{0, 1, 2, ...\}$ and let X_n denote a CW-complex with 1 zero-cell, n one-cells and 1 two-cell. For what choices of n does there exist a covering map $X_n \to X_n$ which is not a homeomorphism
 - (a) for at least one such X_n ?
 - (b) for all such X_n ?

Solution: Since X_n is compact, the covering must have finite degree, and thus the Euler characteristic of X_n must be 0. Therefore, n = 2 is a necessary conditon, in

which case $S^1 \times S^1$ is an example. On the other hand, $X = ([0,1] \times [0,1])/(0,0) \sim (1,1)$ is a non-example, since x = (0,0) is the only point at which X is not locally a 2-manifold with boundary (for example, using first local homology). However, a k-sheeted cover would have k such points, which is the contradiction. Thus, the answer to (a) is n = 2 only, and the answer to (b) is that no such n exists.

5. Let $Y = \{(x, y, z, t) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 + t^2 = 1\}$ and let $Z = \{(x, y, z, t) \in Y \mid z = t = 0\}$ (both with the subspace topology of \mathbb{R}^4). Calculate the homology of the quotient Y/Z.

Solution: The space Y is homotopy equivalent to $S^3 \vee S^2$, so $H_k(Y) = \mathbb{Z}$ for k = 0, 2, 3 and 0 otherwise.