General and Differential Topology QR Exam – Aug 17, 2022

Problem 1. Let M be a smooth manifold.

- (a) Prove that the total space of the tangent bundle TM is orientable.
- (b) Now suppose M is the union of two orientable open submanifolds U_1, U_2 and the intersection $U_1 \cap U_2$ is connected. Prove that M is orientable.

Problem 2. Let $M = \mathbb{R}^2/\mathbb{Z}^2$ (= $S^1 \times S^1$). Let $\iota : M \to M$ be the involution $\iota(x, y) = (-x, y+0.5)$. Let Q be the quotient of M by ι , with a natural smooth manifold structure inherited from \mathbb{R}^2 .

- (a) Explain how to interpret dy as defining a 1-form on Q.
- (b) Show that, viewed as a 1-form on Q, dy is closed but not exact (so gives a nonzero element in $H^1_{dR}(Q)$).

Problem 3. Let SL(n) be the group of $n \times n$ real matrices with determinant 1, considered as a submanifold of the vector space $\mathcal{M}(n)$ of all $n \times n$ real matrices. For each $g \in SL(n)$ identify the tangent space $T_q SL(n)$ with a linear subspace of $\mathcal{M}(n)$.

- (a) Explicitly compute the linear subspace $T_g \operatorname{SL}(n)$ for an arbitrary $g \in \operatorname{SL}(n)$.
- (b) Let $F : SL(n) \to SL(n)$ be the map $F(g) = gg^T$, where g^T is the transpose of the matrix g. Explicitly compute the map on tangent spaces $dF_{id} : T_{id} SL(n) \to T_{id} SL(n)$, where id is the identity matrix. What is the rank of dF_{id} ?

Problem 4. Here are two unrelated questions about submersions of smooth manifolds $\pi : M \to B$.

- (a) Suppose that dim $M = \dim B$ and M is compact. Prove that $\pi^{-1}(q)$ is a finite set for any point $q \in B$.
- (b) Suppose that Y is a smooth vector field on B. Prove that there exists a smooth vector field X on M such that X is π -related to Y (i.e. $\pi_*(X(p)) = Y(\pi(p))$ for any point $p \in M$). (Hint: first show that you can find such an X locally on M, then use a partition of unity argument.)

Problem 5. Let M be a compact smooth manifold. Let X be a smooth vector field on M. For each part, just give a brief explanation or brief description of a counterexample.

- (a) Is X necessarily complete? (A complete vector field is one such that all integral curves extend to be defined for all $t \in \mathbb{R}$.)
- (b) Now assume that X is complete, and take the integral curve through some point $p, \phi_p : \mathbb{R} \to M$. Is ϕ_p necessarily an immersion?
- (c) Now assume an integral curve ϕ_p is an immersion. Is the image of ϕ_p necessarily closed in M?