THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Algebraic Topology

August 2022

- 1. Consider the set $Z \subset \mathbb{R}^3$ of all triples (x_1, x_2, x_3) for which there exists $i \in \{1, 2, 3\}$ such that $|x_i| \leq 1$ and $|x_j| = 1$ for all $j \neq i$. Compute $\pi_1(\mathbb{R}^3 \setminus Z)$.
- 2. Consider the set T of all 2×2 diagonalizable real matrices with determinant 0, with the subspace topology in \mathbb{R}^4 . Is T a topological manifold (without boundary)? Prove or disprove.
- 3. Find, with proof, the minimal possible number of cells in a CW-decomposition of the torus $S^1 \times S^1$.
- 4. A wedge sum of two spaces $X \vee Y$ is obtained by taking the disjoint union $X \coprod Y$ and identifying one chosen point of X with one chosen point of Y, with the quotient topology. Describe the universal cover of the wedge sum $\mathbb{R}P^2 \vee \mathbb{R}P^2$.
- 5. (a) Is every continuous map $S^2 \to S^1 \times S^1$ homotopic to a constant map?
 - (b) Is every continuous map $S^1 \times S^1 \to S^2$ homotopic to a constant map? Prove your answers.