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MAY 2021

All maps below are assumed to be continuous.

(1) Let i : ∂M → M be the inclusion of the boundary of the Mobius strip M
into M . Describe the induced map π1(i) on fundamental groups as a map
of abelian groups.

(2) Let f : X → Y be a covering space of path-connected topological spaces.
For each of the following constraints on f , X or Y , determine if such a
covering space f exists. If one exists, construct it; if not, explain why.

(a) Y = S1 × S1 × S1 and f is not a regular covering space. (Recall
that regular covering spaces are sometimes also called Galois covering
spaces.)

(b) X = RP3 and Y is homotopy-equivalent to a graph.

(3) Fix some n ≥ 1. Assume we are given a continuous automorphism f :
CPn → CPn of order 5. Show that f must have a fixed point.

(4) For any integer g ≥ 1, let Σg be a compact oriented surface of genus g.
Show that there are no covering spaces f : Σ4 → Σ3.

(5) Let X be the space obtained by glueing two copies of S3 together along a
(smoothly embedded) closed submanifold diffeomorphic to the torus T =
S1 × S1, i.e., X = S3 ∪T S3. Calculate H∗(T ).
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Solutions

(1) Consider the unit square S = [0, 1]2. Write {e1, e2, e3, e4} for the 4 oriented
edges of S in standard order. (Draw picture.) Then M is obtained from
S by identifying e1 with e3 in the opposite orientation; thus, the boundary
∂M is spanned by e2 ∪ e4, and we have S1 = ∂M , so π1(∂M) = Z. On the
other hand, projecting away the direction parallel to the glued edges gives
a map f : M → S1 that is a homotopy-equivalence, so π1(M) = Z via f .

The composition S1 = ∂M
i−→ M

f−→ S1 is a degree 2 map: each of e2 and
e4 goes around the target circle exactly once and in the same direction.

Consequently, we learn that π1(i) is the map Z
2−→ Z.

(2) (a) No, such a covering space does not exist. If it existed, then f∗(π1(X))
would be non-normal subgroup of π1(Y ). But π1(Y ) = Z3 is abelian,
so all subgroups are normal.

(b) No, such a covering space does not exist. Indeed, the subgroup π1(X) '
f∗π1(X) of π1(Y ) would have to be a free group: subgroups of free
groups are free, and Y is a homotopy-equivalent to a graph and hence
has a free fundamental group. But π1(X) = Z/2 is not a free group.

(3) Recall that H∗(CPn) is a copy of Z for ∗ ∈ {0, 2, 4, ..., 2n} and 0 in all
other degrees. We claim that H∗(f) = id. Granting this, it follows that
L(f) = χ(CPn) = n+ 1 > 0, so f must have a fixed point by the Lefschetz
fixed point theorem. To prove H∗(f) = id, we simply observe that H∗(−) is
a functor, so H∗(f) is an order 5 automorphism of Z in all even degrees ≤ 2n
(and obviously the identity in all other degrees as the homology vanishes
in other degrees). But Z has no such automorphisms, so H∗(f) = id, as
wanted.

(4) Say we had a covering space f : Σ4 → Σ3. Then f would have to have
finite degree since Σ4 is compact. If we call the degree d, then we have the
Euler characteristic formula

d ∗ χ(Σ3) = χ(Σ4).

But χ(Σg) = 2− 2g. Plugging this in above gives

d ∗ (2− 6) = 2− 8

which simplifies to

−4d = −6,

which is impossible since d is an integer.

(5) The glueing description of X gives a Mayer-Vietoris LES that looks as
follows:

...H∗(T )
α−→ H∗(S3)⊕H∗(S3)→ H∗(X)→ H∗−1(T )→ ...

To use this, we must understand α. The map α0 is the inclusion Z
(1,−1)−−−−→

Z×Z by connectedness considerations, so H0(X) = Z. Moreover, H>0(S3)
is concentrated in degree 3, while H>0(T ) is concentrated in degrees 1 and
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2. Thus, αi = 0 for i > 0. Using the long exact sequence, this gives:

H1(X) = 0 and H2(X) = H1(T ) = Z× Z.

Moreover, for H3(X), we obtain a short exact sequence

0→ H3(S3)2 → H3(X)→ H2(T )→ 0.

Since H2(T ) = H3(S3) = Z and every short exact sequence of free abelian
groups splits, we conclude that

H3(X) = Z3.

All higher groups vanish as H>3(S3) = H>2(T ) = 0.


