THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Topology

January 6, 2020: Algebraic Topology

1. Let D^2 be the unit disk in \mathbb{C} , and let T_n be the manifold with n+1 boundary components obtained from D^2 by removing all complex numbers of distance $<\lambda$ from any of the points

$$\frac{1}{2}e^{2\pi ik/n}, \ k \in \mathbb{Z}$$

where $\lambda < min(|e^{2\pi i/n} - 1|/2, 1/2)$. Now suppose that T_n is embedded into a compact closed oriented smooth surface X without boundary of genus m as a smooth submanifold, and a manifold Y is obtained from X by removing the interior of T_n , and attaching a disk to each of the n+1 resulting boundary components. Assume further that the manifold Y is also connected.

- (a) For which values of $m, n \in \mathbb{N}_0$ is this possible?
- (b) What can we say about the genus of Y?
- 2. Describe a set of free generators of the subgroup of the subgroup of the free group on two generators a, b generated by all conjugates of $aba^{-1}b^{-1}$.
- 3. Consider the manifold T_n from Problem 1. Let its boundary components be C_0, \ldots, C_n . Let $S^1 \subset \mathbb{C}$ be the unit sphere. Let $k \in \mathbb{Z}$. Consider the space X obtained from

$$T_n \coprod (D^2 \times \{0,\ldots,n\})$$

by identifying, for $x \in D^2$, (x, i) with $\phi_i(x)$ where $\phi_i : S^1 \to C_i$ are maps of degree k. Compute $\pi_1(X)$ in terms of generators and defining relations.

4. For n > 1, let X be the pushout of the diagram

$$\mathbb{R}P^{n-1} \xrightarrow{\subset} \mathbb{R}P^n$$

$$\subset \downarrow$$

$$\mathbb{R}P^n.$$

Compute the homology of X.

5. The unreduced suspension \widetilde{X} of a space X is obtained from $X \times [0,1]$ by identifying $(x,0) \sim (y,0)$ and $(x,1) \sim (y,1)$ for all choices of points $x,y \in X$. If S^n is the n-sphere, n > 0, compute the homology of the unreduced suspension of $S^n \times \{0,\ldots,k\}$.

THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Topology

January 6, 2020: Afternoon Session, 2:00 P.M. to 5:00 PM

- 1. Let $\gamma_{2,p}, p$ an odd prime, be the map from $S^3 := \{(z,w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\}$ to itself given by $(z,w) \to \gamma_{2,p} \cdot (z,w) = (-z,e^{\frac{2\pi i}{p}}w)$, and let $\Gamma := \langle \gamma_{2,p} \rangle$, the cyclic group generated by $\gamma_{2,p}$. Let $L(2,p) = S^3/\Gamma$ be the quotient space. Show that one may make L(2,p) a smooth manifold so that the quotient map $(z,w) \to (z,w) \mod \Gamma$ is differentiable.
- **2.** Let $S \subset M_2(\mathbb{R})$ be the set of singular 2×2 matrices, i.e.,

$$S = \{ A \in M_2(\mathbb{R}) \mid \det A = 0 \}.$$

Show that S is a smooth submanifold in $M_2(\mathbb{R})$ away from the origin, the zero matrix in $M_2(\mathbb{R})$. Let $tr: S \to \mathbb{R}$ be the trace map restricted to S. Show that every fiber $tr^{-1}(t)$ is a smooth manifold of S, for all $t \neq 0$. Show that each $t \neq 0$ is a regular value of tr restricted to S.

- **3.** Let M be a compact manifold, and let $E \to M$ be a real vector bundle of rank n on M. Show there is a trivial vector bundle $M \times \mathbb{R}^N$ and a surjective bundle map $\rho: M \times \mathbb{R}^N \to E$.
- **4.** Let

$$J = \left(\begin{array}{cc} 0 & -I_n \\ & \\ I_n & 0 \end{array}\right),$$

a non-singular skew-symmetric matrix in $GL(2n,\mathbb{R})$. Let ω be the non-degenerate skew-symmetric 2-form on \mathbb{R}^{2n} given by $\omega(v,w)=v^TJw$, for $v,w\in\mathbb{R}^{2n}$, and let $Sp(2n,\mathbb{R})$ be the subgroup of $GL(2n,\mathbb{R})$ which preserves ω , i.e., the set

$$\{A \in GL(2n,\mathbb{R}) \, | \, \omega(Av,Aw) = \omega(v,w), \forall v,w \in \mathbb{R}^{2n} \}.$$

Show that $Sp(2n, \mathbb{R})$ is a Lie group. What is the dimension of $Sp(2n, \mathbb{R})$? What is the Lie algebra of $Sp(2n, \mathbb{R})$?

5. a. Show that the smooth 2-form $\omega = \frac{dx \wedge dy}{(1+|z|^2)^2}$ on \mathbb{C} , where z = x + iy, as usual, has a smooth extension to the Riemann sphere $\mathbb{CP}^1 \cong S^2$.

b. Let $f(z)=3\bar{z}^3-2\bar{z}+5$, a map from $\mathbb{C}\to\mathbb{C}$, where $\bar{z}=x-iy$. Show that f extends smoothly as a map from $\mathbb{CP}^1\to\mathbb{CP}^1$. Calculate

$$\int_{\mathbb{CP}^1} f^*\omega.$$