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SOLUTIONS

1. Let M™ C R"™ be a smooth submanifold of dimension m < n — 2. Show that its
complement R™ \ M is both connected and simply connected.

Solution: To see that R™ \ M is path-connected, let p,q € R" \ M and let ¢(¢) be a path
in R™ with ¢(0) = p and ¢(1) = ¢. By the parametric transversality theorem, we can perturb
the interior of ¢ so that ¢ intersects M transversally. However since dim M + dimc¢ < n,
intersecting transversally means having empty intersection. So we have found a path from
p to ¢ which does not touch M, showing R™ \ M is path-connected.

To see that R™\ M is simply connected, let ¢;(t) and ¢3(t) be two closed loops in R™\ M.
Since R™ is simply connected, there is a homotopy F(s,t) = ¢s(t) between ¢; and ¢y. By the
parametric transversality theorem, we can perturb the surface F'(s,t) so that it intersects
M transversally. As before, the dimension of M is small enough such that transverse inter-
section means empty intersection.

2. M is a smooth manifold of dimension n, and w is a smooth k-form on M where k > 1.

(1) If k is odd, show w Aw = 0.

Solution: If o is a k form and 8 is an [ form then a A 8 = (=1)*8 A a. Con-
sequently, wAw = (—1)*wAw = —wAw since k odd implies k* odd. Thus wAw = 0.

(2) What are the minimal values of k and n so that w A w is possibly nonzero. Give such
an example.

Solution: By the previous question, £ = 2 is the smallest potential possible value
for k. If so, w A w is a 4-form, so n > 4 or else a A o would be 0. The values k = 2
and n = 4 can be realized by the standard symplectic form on R? x R2?, namely
a = dxy A dy; + dxe A dys. Indeed, a A v is some multiple of dzq A dy; A dao A dys,
which is a nowhere vanishing volume form.

(3) Let a be a closed differential 2-form on S*. Prove that a A a vanishes at some point.

Solution: Since H%5(S*) = 0, we know « is exact, i.e. o = df for some 1-form 3.
Note

dfNa)=pFANda+dBNa=aAa.

[q4aAa:/q4d(BAa):O.
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By Stokes’ theorem,
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Since a A « is a 4-form on S*, we know a A o = fw, where f is a smooth function
and w is a nowhere vanishing volume form on S*. If f is never 0, then by continuity,
f cannot change sign, and so [ g1 Jw # 0, contradicting the above computation.

3. Show that the real cubic surface given by

S={lzr:y:z:w] eRP® : 2* +3° + 2 + w* = 0}

is a smooth submanifold of RP3, and compute its dimension.

Solution: Suppose [z : y : z : w] is such that w # 0. Then in local coordinates, the
defining equation for S becomes f(z,y,2) =23+ 3>+ 2> —1=0. Observe zr =y =2 =0
does not satisfy the equation. Hence df = (3z,3y, 32z) cannot be zero on S. By the regular
value theorem, we have shown S N {w # 0} is a smooth submanifold of RP? of codimension
1, or dimension 2. An analogous argument works for the three remaining charts {z # 0},

{y # 0}, {z #0}.

4.
(1)

Show that the subset M of R? defined by the equation
(1—2%) (2 +y*) =1

is a smooth submanifold of R3.

Solution: Let f(x,y,2) = (1 — 2?)(z* + y?). We want to show 1 is a regular value
of f. If (x,y,2) € f~*(1), we must have 1 — 22 # 0. We have

df = (22(1 — 22),2y(1 — 22), =2z(2® + y?)).

If this is the 0 vector, then 1 — 2% # 0 implies x = y = 0. But f(0,0,2) = 0 # 1,
contradiction. So df has full rank for (z,y,2) € f~'(1), which means f~!(1) is a
smooth submanifold of R3.

Define a vector field on R? by

0 9] 0
_ 2.9 2 O .9
V—zazax—i—zy&y—i—z(l z)az.

Show that the restriction of V' to M is a tangent vector field to M.

Solution: The vector field V' is tangent to M iff the dot product gradf -V is 0. We
check

arad [V = (20(1 - 22),25(1 — 22), ~22(a + 7)) - (2, 22y, 2(1 - 2%)) =0,
using that f(x,y,z) =1 on M.
The family of maps ¢:(x,y, z) = (cx — sy, st + cy, z) with ¢ = cos(t) and s = sin(t)

obviously restricts to a one-parameter family of diffeomorphisms of M. For each t,
determine the vector field (¢;).V on M.
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Solution: (The family of maps ¢, restricts to M means if f(z,y,z) = 1, then

f(¢t(x7y7 Z)) = 1)
Now (¢¢).V is simply the derivative matrix D(¢;) applied to the vector V. We

compute
c —s 0 22 cz’r — s2%y
D(g)(V)=|[s ¢ 0 22y = [ 52?2z + c2%y
0 0 1/ \z(1-2% 2(1—2%)

5. Prove or disprove:

(1) Let M and N be two smooth manifolds. If the tangent bundles TM and T'N are
diffeomorphic, then M and N are diffeomorphic.

Solution: Let M be the cylinder S' x R and let N be the Mébius band. Then M
and N are not diffeomorphic since M is orientable but N is not.

We claim both TM and TN are diffeomorphic to S' x R3. To see this, note
TM=T(S'xR)=2TS'x TR~ S x R x R?. For TN, first note we can write

N = {(l‘,y)|l‘ € [0727T]7 yE R}/(an) ~ (27T7 _y)'

Then we can write

0 0
TN = {(Ly,a% +b8_y) |z €[0,27],y,a,b € R} /(0,y,a,b) ~ (27w, —y,a, —b).

Let f : TN — S' x R x C be given by f(z,y,a,b) = (z,a,e™?(y +ib)). Note
f(0,y,a,b) = f(2m, —y,a, —b) so f is a well-defined. Moreover, f is a diffeomorphism,
which proves the claim.

(2) The tangent bundle of a 2-dimensional sphere S? is not diffeomorphic to S? x R.
Solution: If F': S? x R? — T'S? is a diffeomorphism, then F(p, z) for some xy # 0

in R? defines a nowhere vanishing vector field on R?, contradicting the hairy ball
theorem.



