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SOLUTIONS

1. Show that

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

defines a nonzero deRham cohomology class of R2 \ {0, 0}.

Solution: We need to show ω is closed but not exact.
Computing the exterior derivative gives

dω =

(
∂

∂x

x

x2 + y2
− ∂

∂y

−y
x2 + y2

)
dx ∧ dy

=

(
(x2 + y2)− 2x2 + (x2 + y2)− 2y2

(x2 + y2)2

)
dx ∧ dy

= 0,

so ω is closed.
To show ω is not exact, we integrate ω around the unit circle C, which we will parametrize

by f(t) = (cos(t), sin(t)) from t = 0 to 2π. It suffices to show the integral
∫
C
ω 6= 0. Indeed,

if ω were exact, then ω = dg for some smooth function g and then Stokes’ theorem would
give

∫
C
dg =

∫
∂C
g = 0 since C has no boundary.

We have

f ∗dx = − sin(t)dt

f ∗dy = cos(t)dt.

Writing x, y, dx, dy in terms of t, we get∫
C

ω =

∫ 2π

0

sin2(t) + cos2(t) dt = 2π 6= 0.

Therefore, ω is not exact.

2. Any non-constant smooth function of a compact connected manifold has at least two
critical points.

Solution: Let M be a compact connected manifold and let f : M → R be a smooth
function. Since M is compact and f is continuous, the function f must achieve both a
maximum and minimum value on M . Suppose p is such that f(p) is the maximum value of
f . We claim f has a critical point at p. To see this, let γ : (−ε, ε) → M be a curve with
γ(0) = p (this is assuming M has no boundary, which is necessary or else f(x) = x on [0, 1]
is a counter-example to the statement of the problem). Suppose for contradiction γ′(t) 6= 0.
If γ′(t) > 0 then there is small enough t > 0 so that f(γ(t)) > f(p) and if γ′(0) < 0, there
is t > 0 so that f(γ(−t)) > f(p), contradicting the maximality of f(p). A similar argument
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shows that if q ∈M is such that f(q) is the minimum value at f , then f must have a critical
point at q.

3. For each n ≥ 1, there is a diffeomorphism (TSn)× R ∼= Sn × Rn+1.

Solution: View Sn as {(x1, . . . , xn+1) ∈ Rn+1 |x21 + · · · + x2n = 1}. Let Np be the normal
vector field to Sn, i.e. associate to each p = (x1, . . . , xn+1) ∈ Rn the vector (x1, . . . , xn+1).
Define

F : (TSn)× R→ Sn × Rn+1

(p, v, α) 7→ (p, v + αNp).

This map is clearly smooth. It is bijective because any w ∈ Rn+1 can be decomposed uniquely
as w = w1 + w2 where w1 is in the direction of Np and w2 is in the direction normal to Np,
i.e. in the direction of TpS

n.

4. Assuming that every n-dimensional compact manifold Mn can be embedded into some
RN , prove that we can choose N = 2n + 1. (Hint: Given a nonzero vector v 6= 0 in RN ,
once can define a parallel projection φv from RN to the orthogonal complement of v. If
N > 2n+ 1, we can choose some v so that φv|Mn is an embedding.)

Solution: We need to choose v so that φv is an injective immersion.
Injective: In order for φv to be injective, we need the line tv to pass through at most one

point on M . Define

F : M ×M \∆→ RPN−1

(p, q) 7→ [p− q].

If F (p, q) = [v], then the line tv will pass through both p and q, which means φv is not
injective. If [v] is not in the image of F , then the fiber of φv contains at most one point, i.e.
φ is injective. We claim the image of F has measure 0 so long as 2n = dim(M ×M \∆) >
dim(RPN−1) = N − 1. Indeed, if the dimensions satisfy this inequality, F cannot have any
regular values, so every value of F must be a critical value. The set of critical values has
measure 0 by Sard’s theorem.

Immersion: In order for φv to be an immersion, we must have dφv is injective on tangent
spaces. Since φv is linear, its derivative is itself. For the projection φv to be injective on
tangent spaces, we must have that v is not parallel to any vector tangent to M . Define

G : TM \ {(p, 0)|p ∈M} → RPN−1

(p, w) 7→ [w].

If v is not in the image of G, then v is not parallel to any vector tangent to M . Again, by
Sard’s theorem, the image of G has measure 0 so long as 2n = dim(TM) > dim(RPN−1) =
N − 1.

In conclusion, if 2n > N − 1, we can choose v so that [v] ∈ RPN−1 is not in the image
of F or G, guaranteeing the projection φv is an injective immersion, and hence an embedding.
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(1) Show that the space of orthogonal matrices

O(n) = {A ∈Mn×n(R) |AAT = Id}

is a smooth submanifold of Mn×n(R).

Solution: Let S(n) denote the space of n × n real symmetric matrices. Consider
the function

F : Mn×n(R)→ S(n)

A 7→ AAT .

By the regular value theorem, it suffices to show Id is a regular value of F . To this
end, we compute the derivative

DFA : TAMn×n(R)→ TIdS(n)

for any A ∈ O(n) and show it is surjective. Note we can identify TAMn×n(R) ∼=
Mn×n(R) and TF (A)S(n) ∼= S(n). Let B ∈ TAMn×n(R) ∼= Mn×n(R). Then

DFA(B) =
d

dt
|t=0 F (A+ tB)

=
d

dt
|t=0(A+ tB)(A+ tB)T

=
d

dt
|t=0AA

T + t(ABT +BAT ) + t2(BBT )

= ABT +BAT .

To see DFA is surjective onto symmetric matrices, note that we can write any sym-
metric matrix X as P + P T , where P is upper triangular. (Indeed, take the super
diagonal entries of P to be the same as A, and take the diagonal entries of P to be
one half times the diagonal entries of A). Then given P and A, we can solve the
equation P = ABT for B, since we are assuming A ∈ O(n) and so A is invertible
because A−1 = AT . This shows DFA is surjective as desired.

(2) Verify that the tangent space at the identity matrix

o(n) = {A ∈Mn×n(R) |A+ AT = 0}.

Solution: First we claim these two vector spaces have the same dimension. The
dimension of the right hand side is n2−n

2
, since we are free to specify the upper-

triangular part of the matrix A. To compute the dimension of the lefthand side,
we can use the regular value theorem. Since O(n) = F−1(Id) with F defined as
above, we know O(n) ⊂ Mn×n(R) is a smooth submanifold with codimension equal

to dimS(n) = n2−n
2

+ n. Hence dimO(n) = dim o(n) = n2 − dimS(n) = n2−n
2

.
Next, suppose γ(t) is a curve in O(n) with γ(0) = Id, so γ′(0) ∈ o(n). Then

F (γ(t)) = Id.

Differentiating both sides with respect to t and using the chain rule gives

DFId(γ
′(0)) = 0.
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This means

o(n) ⊂ kerDFId = {A ∈Mn×n(R) |A+ AT = 0}.
Since these two vector spaces have the same dimension, the only way for one of them
to be a subset of the other is if they are the same.

(3) Show that the tangent bundle TO(n) can be trivialized, i.e.

TO(n) ∼= O(n)× o(n).

Solution: Let (g, v) ∈ TO(n), i.e. g ∈ O(n) and v ∈ TgO(n). Let Lg−1 denote left
multiplication by g−1. This map is a diffeomorphism, so its derivative at g

DgLg−1 : TgO(n)→ TIdO(n) = o(n)

is a linear isomorphism. Let

Φ : TO(n)→ O(n)× o(n)

(g, v) 7→ (g,DgLg−1(v)).

Then Φ is a diffeomorphism.


