Syllabus for Math 597: Real Analysis • Abstract measure spaces. Algebras and sigma-algebras of sets, outer measure, Lebesgue-Caratheodory theorem, product measures, Fubini and Tonelli theorems. • Lebesgue measure in \mathbb{R}^n . Lebesgue measure on the real line, measurable sets, approximation of a measurable set by open and compact sets, Borel sets, existence of non-measurable sets, Lebesgue measure in \mathbb{R}^n . • Measurable functions. Approximation of measurable functions by simple functions, convergence of measurable functions, Egoroff's and Lusin's theorems. • Integration. Lebesgue integral, monotone and dominated convergence theorems, Fatou's lemma, change of variables formula for the Lebesgue integral in \mathbb{R}^n , functions of bounded variation. \bullet L^p spaces. Holder and Minkowski inequalities, L^p and L^{∞} spaces, dual of L^p spaces for $p < \infty$. • Signed and complex measures. Hahn and Jordan decompositions, variation of a complex measure, Radon-Nikodym theorem. • Differentiation. Hardy-Littlewood maximal function, Hardy-Littlewood theorem, Lebesgue differentiation theorem in \mathbb{R}^n , fundamental theorem of calculus. ## References. • Folland: Real Analysis; • Royden: Real Analysis; • Stein and Shakarchi: Real Analysis; • Tao: An Introduction to measure theory.