Applied Functional Analysis Qualifying exam

Assigned January 9, 2022

Problem 1

Let H_1 and H_2 be Hilbert spaces and $A: H_1 \mapsto H_2$ a compact operator. Prove that adjoint A^* of A is compact.

Problem 2

Let a, b be two real numbers satisfying a < b and consider the space $L^2([a, b])$, with the usual inner product

$$\langle f,g\rangle = \int_a^b \overline{f(x)}g(x)dx, \qquad \forall\, f,g\in L^2([a,b]),$$

where the bar denotes complex conjugate. Introduce also the space $H := L^2([a, b] \times [a, b])$ and denote its inner product by

$$\langle F, G \rangle_H = \int_a^b \int_a^b \overline{F(x, y)} G(x, y) dx dy, \quad \forall F, G \in H.$$

- 1. Let $(\varphi_n(x))_{n\geq 1}$ and $(\tilde{\varphi}_n(x))_{n\geq 1}$ be two orthonormal bases of $L^2([a, b])$. Prove that $(\varphi_n(x)\tilde{\varphi}_m(y))_{n,m\geq 1}$ is an orthonormal basis of H.
- 2. Consider the compact linear integral operator $A: L^2([a,b]) \mapsto L^2([a,b])$ defined by

$$Af(x) := \int_a^b e^{-(x-y)^2} f(y) dy.$$

Denote its eigenvalues by λ_n and its eigenfunctions by $u_n(x)$, for $n \ge 1$. Prove that the kernel of A satisfies

$$e^{-(x-y)^2} = \sum_{n=1}^{\infty} \lambda_n u_n(x) \overline{u_n(y)},$$

where the series converges in the H norm. Prove also that

$$\int_{a}^{b} \int_{a}^{b} e^{-2(x-y)^{2}} dx dy = \sum_{n=1}^{\infty} \lambda_{n}^{2}$$

Problem 3

Let H be a Hilbert space over the complex field \mathbb{C} .

1. Consider a sequence $(x_n)_{n\geq 1}$ in H that is weakly Cauchy. This means that for any linear bounded functional $\varphi \in H^*$, the sequence $(\varphi(x_n))_{n\geq 1}$ is Cauchy in \mathbb{C} . Define the sequence of linear maps

$$F_n: H^\star \mapsto \mathbb{C}, \quad F_n(\varphi) := \varphi(x_n), \qquad \forall \, \varphi \in H^\star, \ \forall \, n \ge 1$$

and use it to prove that $(x_n)_{n\geq 1}$ is a bounded sequence.

2. Let S be a set in H with the following property: Every non-empty subset of S has a weak Cauchy sequence. Prove that S is bounded.

Problem 4

Let δ_y denote the Dirac delta located at $y \in \mathbb{R}$, and let $\delta_y^{(n)}$ denote its n^{th} distributional derivative.

- 1. Does $\sum_{n=1}^{\infty} \delta_{1/n}^{(n)}$ define a distribution in $\mathscr{D}'(\mathbb{R})$? Prove or disprove.
- 2. Does $\sum_{n=1}^{\infty} \delta_{1/n}^{(n)}$ define a distribution in $\mathscr{D}'((0,\infty))$? Prove or disprove.
- 3. Let f(x) be a $C^{\infty}(\mathbb{R})$ function with f(0) = 0 and let $F \in \mathscr{D}'(\mathbb{R})$ be a distribution with support $\{0\}$. Is f(x)F the zero distribution? Prove or disprove.

Problem 5

Suppose that A is a compact self-adjoint operator on a Hilbert space H, and suppose that the eigenvalues $\{\lambda_n\}_{n=1}^{\infty}$ of A are all nonzero and satisfy $|\lambda_n| \leq Cn^{-1}$ for some C > 0. Let $\{e_n\}_{n=1}^{\infty}$ denote the corresponding orthonormal eigenvectors.

- 1. Show that $f := \sum_{n=1}^{\infty} n^{-1/2} \lambda_n e_n \in H$.
- 2. Is $f \in \operatorname{Ran}(A)$? Prove or disprove.