University of Michigan QR Exam in Applied Analysis (556) May 2014

1. (a) (5 pts) Assume f is 27-periodic with Fourier series > fre™® and |f;| < 27
How many continuous derivatives does f have?

(b) (5 pts) Give a counterexample to the following statement: If f,(z) — f(z) for all
z € R, then [7 fo(x)de — [7 f(x)dz.

(c¢) (10 pts). Find the x and t dependences of the general term in the Fourier-series
solution to dyu = kOy,u, k > 0, on the interval 0 < x < 1, with boundary
conditions d,u(0,t) = d,u(1,t) = 0.

2. (a) (b pts) Let a,b be elements of a normed vector space. Show that |||a| — ||b]|| <
la = b
(b) (10 pts) Let {vy,...v,} be an orthonormal set in C*.

Show that for any a € C*, there is a unique set of constants {cy, ..., ¢y} such that
a — Y 1" ¢jv; is orthogonal to all the v;’s, and determine the constants explicitly.

(c) (5 pts) Find the expansion of the constant function 1 in terms of an orthonormal
basis of trigonometric functions on [0, 27].

3. (20 pts) Let Oppu + 0yyu = 0 for x € R,y > 0 with boundary condition u(x,0) = f(z).
Show that, under suitable assumptions on f, a solution is:

u(z,y) = /_00 Mdt.

o T(t% +?)
(Hint: consider the Fourier transform). Is this solution unique?
4. (a) (5 pts) Find a sequence of functions which converges weakly to the Dirac delta
function on R, and show that it does so.
(b) (10 pts) In R", show that [x|*V2§(x) = 2nd(x).
(¢) (5 pts) Show that u(x) = H(x), the Heaviside function, is a weak solution of
xj—z =0 for z € R.

5. (a) (15 pts) Find the Green’s function for the ODE v” = f(z),0 < = < 1 with
boundary conditions Byu = u/(0) — u(1) = 0 and Bou = /(1) = 0.

(b) (5 pts) Give the solution to V2N (z) = §(z) in R* and show that it is the solution.
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1. Are the following statements true or false? Justify your answer for full credit.
(a) The Lax-Wendroff scheme is [o-stable iff |v| < 1.

(b) The problem v” = f(x), u(0) = u(1) = 0, is solved by centered differencing approximation.
Then Gauss-Seidel converges more rapidly as h — 0.

1
(c) u;,”rl = §(u?+1 +uj_y) + kDyD_u} approximates the heat equation.

(d) The iteration u§-k+1) = % (ugk_)l + uyi)l) — h? fj converges for any initial guess u?.
2. Consider the implicit 2-step method
au” + Bu™ "t 4 " = hf(u™)
for the problem v’ = f(u), u(0) = uo.

(a) Find «, 8 and v which yield a second order scheme.
(b) Show that the method in part (a) is zero-stable.
(c) Show that the method in part (a) is A-stable.
3. The linearized model for a swinging pendulum with damping is given by
0" (t) = —ab(t) — bo' (t)

where a > 0, and b > 0 is the friction coefficient.

(a) Define Uy = 0 and Us = €' and write the above second order equation as a first order
system.

(b) The system in part (a) is solved by Euler’s method. If a = 4 and b = 5, what restriction
on the step size k is needed in order to ensure that the scheme is stable?

(c) What restriction on k is needed in the case of undamped motion (b = 0)? What would
be a more suitable scheme for this case?

4. Consider the Crank-Nicolson scheme for the heat equation

n+1 n+1
U =D.D_ u oy )
k 2

(a) Compute the LTE.
(b) Show that if 7 = k/h? < 1, [|[u™|]|oo < [[t"]]oo-

(c) Use the energy method to show that the scheme is stable in the ls-norm. Under what
conditions on r = k/h%?



5. The box scheme for u; 4+ au, = 0 is defined by

1 1 1 1
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At Az =0

Use the Fourier method to analyze the stability of this scheme in the I3 norm.
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