University of Michigan QR Exam in Applied Analysis (556) May 2014

- 1. (a) (5 pts) Assume f is 2π -periodic with Fourier series $\sum_{-\infty}^{\infty} f_k e^{ikx}$, and $|f_k| \leq 2^{-k}$. How many continuous derivatives does f have?
	- (b) (5 pts) Give a counterexample to the following statement: If $f_n(x) \to f(x)$ for all $x \in \mathbb{R}$, then $\int_{-\infty}^{\infty} f_n(x) dx \to \int_{-\infty}^{\infty} f(x) dx$.
	- (c) (10 pts). Find the x and t dependences of the general term in the Fourier-series solution to $\partial_t u = k \partial_{xx} u$, $k > 0$, on the interval $0 \leq x \leq 1$, with boundary conditions $\partial_x u(0, t) = \partial_x u(1, t) = 0$.
- 2. (a) (5 pts) Let a, b be elements of a normed vector space. Show that $||a|| ||b||| \le$ $||a - b||.$
	- (b) (10 pts) Let $\{v_1, \ldots v_m\}$ be an orthonormal set in \mathbb{C}^k .

Show that for any $a \in \mathbb{C}^k$, there is a unique set of constants $\{c_1, \ldots, c_m\}$ such that $a - \sum_{1}^{m} c_j v_j$ is orthogonal to all the v_j 's, and determine the constants explicitly.

- (c) (5 pts) Find the expansion of the constant function 1 in terms of an orthonormal basis of trigonometric functions on $[0, 2\pi]$.
- 3. (20 pts) Let $\partial_{xx}u + \partial_{yy}u = 0$ for $x \in \mathbb{R}, y > 0$ with boundary condition $u(x, 0) = f(x)$. Show that, under suitable assumptions on f , a solution is:

$$
u(x,y) = \int_{-\infty}^{\infty} \frac{yf(x-t)}{\pi(t^2 + y^2)} dt.
$$

(Hint: consider the Fourier transform). Is this solution unique?

- 4. (a) (5 pts) Find a sequence of functions which converges weakly to the Dirac delta function on R, and show that it does so.
	- (b) (10 pts) In \mathbb{R}^n , show that $|\mathbf{x}|^2 \nabla^2 \delta(\mathbf{x}) = 2n\delta(\mathbf{x})$.
	- (c) (5 pts) Show that $u(x) = H(x)$, the Heaviside function, is a weak solution of $x \frac{du}{dx} = 0$ for $x \in \mathbb{R}$.
- 5. (a) (15 pts) Find the Green's function for the ODE $u'' = f(x)$, $0 < x < 1$ with boundary conditions $B_1 u = u'(0) - u(1) = 0$ and $B_2 u = u'(1) = 0$.
	- (b) (5 pts) Give the solution to $\nabla^2 N(x) = \delta(x)$ in \mathbb{R}^3 and show that it is the solution.

May 2014

QR Exam in Numerical Analysis

- 1. Are the following statements true or false? Justify your answer for full credit.
	- (a) The Lax-Wendroff scheme is l_{∞} -stable iff $|\nu| \leq 1$.

(b) The problem $u'' = f(x)$, $u(0) = u(1) = 0$, is solved by centered differencing approximation. Then Gauss-Seidel converges more rapidly as $h \to 0$.

- (c) $u_j^{n+1} = \frac{1}{2}$ $\frac{1}{2}(u_{j+1}^n + u_{j-1}^n) + kD_+D_-u_j^n$ approximates the heat equation.
- (d) The iteration $u_j^{(k+1)} = \frac{1}{2}$ 2 $\left(u_{j-1}^{(k)}+u_{j+1}^{(k)}\right)-h^2f_j$ converges for any initial guess u_j^0 .
- 2. Consider the implicit 2-step method

$$
\alpha u^n + \beta u^{n-1} + \gamma u^{n-2} = h f(u^n)
$$

for the problem $u' = f(u)$, $u(0) = u_0$.

- (a) Find α , β and γ which yield a second order scheme.
- (b) Show that the method in part (a) is zero-stable.
- (c) Show that the method in part (a) is A-stable.
- 3. The linearized model for a swinging pendulum with damping is given by

$$
\theta''(t) = -a\theta(t) - b\theta'(t)
$$

where $a > 0$, and $b \ge 0$ is the friction coefficient.

(a) Define $U_1 = \theta$ and $U_2 = \theta'$ and write the above second order equation as a first order system.

(b) The system in part (a) is solved by Euler's method. If $a = 4$ and $b = 5$, what restriction on the step size k is needed in order to ensure that the scheme is stable?

(c) What restriction on k is needed in the case of undamped motion $(b = 0)$? What would be a more suitable scheme for this case?

4. Consider the Crank-Nicolson scheme for the heat equation

$$
\frac{u_j^{n+1} - u_j^n}{k} = D_+ D_- \left(\frac{u_j^n + u_j^{n+1}}{2} \right).
$$

(a) Compute the LTE.

(b) Show that if $r = k/h^2 \le 1$, $||u^{n+1}||_{\infty} \le ||u^n||_{\infty}$.

(c) Use the energy method to show that the scheme is stable in the l_2 -norm. Under what conditions on $r = k/h^2$?

5. The box scheme for $u_t + au_x = 0$ is defined by

$$
\frac{(u_j^{n+1} - u_j^n) + (u_{j+1}^{n+1} - u_{j+1}^n)}{2\Delta t} + a \frac{(u_{j+1}^{n+1} - u_j^{n+1}) + (u_{j+1}^n - u_j^n)}{2\Delta x} = 0
$$

Use the Fourier method to analyze the stability of this scheme in the l_2 norm.