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Note: all Lp spaces appearing below are with respect to the Lebesque measure.

Problem 1. Construct a function f ∈ L2(R) such that f 6∈ Lp([a, b]) for each
−∞ < a < b < +∞ and each p > 2.

Solution. Let r ∈ Q and n ∈ N. Consider a non-negative function

fr,n(x) := |x− r|−
1
2+

1
n+21[r−1,r+1](x)

and note that fr,n ∈ L2(R) but fr,n 6∈ Lp([a, b]) if a < r < b and p ≥ 2+ 4
n . The set

of all pairs (r, n) is countable, let (rk, nk), k ∈ N, be its enumeration. The function

f(x) :=

∞∑
k=1

2−k · frk,nk
(x)

‖frk,nk
‖L2(R)

belongs to L2(R) (we use the completeness of this space here) but does not belong
to Lp([a, b]) if a < rk < b and p ≥ 2+ 4

nk
(since the corresponding integral diverges).

The latter implies that f 6∈ Lp([a, b]) for all a < b and p > 2 as desired.

Remark. In fact, there is no need to include the additional parameter n into the
construction. Instead, one can start with the functions

fr(x) := |x− r|− 1
2 | log |x− r||−1 · 1[r−1,r+1](x)

that belong to L2(R) but not to Lp([a, b]) with a < r < b and p > 2.

Problem 2. Let E ⊂ R be a measurable set such that λ1(E) > 0, where λ1 stands
for the Lebesgue measure on R.

(a) Prove that there exists an interval ∅ 6= I ⊂ R such that λ1(E ∩ I) ≥ 3
4λ1(I).

(b) Prove that 0 is an interior point of the set E − E := {x− y |x, y ∈ E}.
Solution. (a) The countable additivity implies λ1(E ∩ (n, n + 1)) > 0 for some
n ∈ Z. Without loss of generality, below we assume that n = 0 and E = E ∩ (0, 1).
There is nothing to prove if λ1(E) ≥ 3

4 , thus we can also assume that λ1(E) < 3
4 .

In this case one can use the regularity of the Lebesgue measure in order to find an
open set U such that E ⊂ U ⊂ (0, 1) and λ1(U) < 4

3λ1(E). Each open subset of
the real line is an at most countable union of disjoint open intervals: U =

⊔
k Ik. If

we had λ1(E ∩ Ik) < 3
4λ1(Ik) for all k, then the countable additivity would imply

that

λ1(E) = λ1(E ∩ U) =
∑
k λ1(E ∩ Ik) < 3

4

∑
k λ1(Ik) = 3

4λ1(U) < λ1(E) ,

which is a contradiction.

(b) We know from part (a) that there exists an interval I such that λ1(E ∩ I) ≥
3
4λ1(I). Without loss of generality (shift and rescale the set E, which results in
a rescaling of the difference set E − E) let us assume that I = (0, 1). Note that
0 ∈ E − E and assume, that t 6∈ E − E for some t ∈ (0, 12 ); the case t ∈ (− 1

2 , 0) is
similar. This assumption means that the sets E and E + t are disjoint and hence

3
2 ≤ 2λ1(E) = λ1(E) + λ1(E + t) = λ1(E ∪ (E + t)) ≤ λ1((0, 1 + t)) = 1 + t,

a contradiction. Therefore, (− 1
2 ,

1
2 ) ⊂ E − E and 0 is an interior point of E − E.
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Problem 3. Let f ∈ L1([0, 1]) and let g : [0, 1] → R be a bounded increasing
function on [0, 1] such that for all 0 ≤ a < b ≤ 1 one has∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣2 ≤ (g(b)− g(a))(b− a) .

Prove that f ∈ L2([0, 1]).

Solution. Let b = a+ h and rewrite the assertion as∣∣∣∣∣ 1h
∫ a+h

a

f(x)dx

∣∣∣∣∣
2

≤ g(a+h)− g(a)

h
.

We now use the following two facts:

• monotone functions are almost everywhere differentiable;

• if f ∈ L1, then 1
h

∫ a+h
a

f(x)dx→ f(a) as h ↓ 0 for almost all a.

Sending h ↓ 0 one easily concludes that |f(a)|2 ≤ g′(a) almost everywhere on [0, 1].

Note that g′ ∈ L1([0, 1]) since
∫ 1

0
g′(x)dx ≤ g(1)− g(0). Therefore, f ∈ L2([0, 1]).

Problem 4. Let a sequence of functions fn ∈ L3([−1, 1]) be such that fn →
n→∞

f

a.e. on [−1, 1] and ‖fn‖3 ≤ C < +∞. Prove that∫∫
[−1,1]2

fn(x)fn(y)

(x2 + y2)1/2
dxdy →

n→∞

∫∫
[−1,1]2

f(x)f(y)

(x2 + y2)1/2
dxdy .

Solution. First, note that f ∈ L3([−1, 1]) due to Fatou’s lemma:∫ 1

−1
|f(x)|3dx ≤ lim inf

n→∞

∫ 1

−1
|fn(x)|3dx ≤ C3 .

Second, a standard argument implies the convergence fn → f in Lp for all p < 3.
To prove this, one writes∫ 1

−1
|fn(x)−f(x)|pdx =

∫
{|fn−f |≤M}

|fn(x)−f(x)|pdx+

∫
{|fn−f |≥M}

|fn(x)−f(x)|pdx

and applies the Hölder inequality to the second term:∫
{|fn−f |≥M}

|fn(x)−f(x)|pdx

≤
(∫
{|fn−f |≥M}

|fn(x)−f(x)|3dx
)p

3

·
(∫
{|fn−f |≥M}

dx

)1− p
3

≤ ‖fn − f‖p3 · (λ1({x : |fn(x)− f(x)| ≥M}))1−
p
3

≤ ‖fn − f‖p3 ·
(
‖fn − f‖3

M

)3−p
=
‖fn − f‖33
M3−p .

Therefore,∫ 1

−1
|fn(x)− f(x)|pdx ≤

∫
{|fn−f |≤M}

|fn(x)− f(x)|pdx+
(2C)3

M3−p

and one can first choose M big enough and then n big enough in order to make
this sum arbitrarily small. (Note that the integrand in the first term is uniformly
bounded and hence the dominated convergence theorem applies.)
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It is also easy to see that the convergence fn → f in Lp([−1, 1]) implies the
convergence of the functions fn(x)fn(y) of two variables to f(x)f(y) in Lp([−1, 1]2).
In particular, this convergence holds, e.g., for p = 5

2 . Due to the duality of Lp and

Lp/(p−1) (or simply to the Hölder inequality), it remains to show that the function
g(x, y) := (x2 +y2)−1/2 belongs to the space L5/3([−1, 1]2). This is straightforward
in the polar coordinates:∫

[−1,1]2
|g(x, y)| 53 dxdy ≤ 2π

∫ √2

0

rdr

r5/3
< +∞ .

Problem 5. Let f, g : [0, 1]→ [0, 1] be absolutely continuous functions.

(a) Is it always true that the composition h := f ◦g is absolutely continuous? (Give
a proof or provide a justified counterexample.)

(b) Assume, in addition, that h = f ◦ g is of bounded variation. Prove that in
this case h is absolutely continuous. [Hint: you may start by proving that the
function h sends sets of zero measure to sets of zero measure. For the remaining
(harder!) part of the argument you can rely (without justification) upon the fact

that
∫ 1

0
#{x : h(x)=y}λ1(dy) equals the total variation of h. ]

Solution. (a) No, the composition of absolutely continuous functions is not neces-
sarily absolutely continuous. Moreover, it is not necessarily of bounded variation, an
example is given by f(x) =

√
x and g(x) = x2| cos 1

x |. (Both functions f(x) =
√
x

and g̃(x) := x2 cos 1
x are differentiable on (0, 1] with L1 derivatives, thus absolutely

continuous. Therefore, g(x) = |g̃(x)| is also absolutely continuous.) Indeed, the
composition h = f ◦ g is given by

h(x) = x| cos 1
x |

1/2, x ∈ [0, 1];

in particular h( 1
πn ) = 1

πn and h( 1
π(n+ 1

2 )
) = 0 for all n ∈ N, which means that the

total variation of h on [0, 1] is bounded from below by
∑∞
n=1

1
πn = +∞ .

(b) As suggested in the hint, we begin with proving that h = f ◦g sends sets of zero
measure to sets of zero measure. It is enough to show that the same holds for both
f and g or, more generally, to each absolutely continuous function f : [0, 1]→ [0, 1].

Let E ⊂ [0, 1] is such that λ1(E) = 0; in order to prove that λ1(f(E)) = 0 we
can also assume that E ⊂ (0, 1). As f is absolutely continuous, for each ε > 0 there
exists δ > 0 such that the assertion

∑
k |tk − sk| < δ implies

∑
k |f(tk)− f(sk)| ≤ ε

provided that the intervals (min{sk, tk},max{sk, tk|) are disjoint; note that the
summation over countably many intervals is allowed (e.g., by taking the limit of
finite sums).

For each δ > 0 there is an open set U ⊃ E such that λ1(E) < δ. Open subsets of
the real line are at most countable disjoint unions of intervals, so U =

⊔
k(ak, bk).

Let sk := min
[ak,bk]

f and tk := max
[ak,bk]

f . Then,
∑
k |tk − sk| ≤

∑
k(bk − ak) < δ and

λ1(f(E)) ≤ λ1(f(U)) ≤
∑
k λ1(f(ak, bk)) ≤

∑
k |f(tk)− f(sk)| ≤ ε .

As ε can be taken arbitrary small, this proves that λ1(f(E)) = 0 if λ1(E) = 0.
The same argument applies to g, which implies that the composition h = f ◦ g also
sends sets of zero measure to sets of zero measure.

The remaining part of the proof is considerably harder (see the next page).
Providing the full solution to this question was not required for the 100/100 score.
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Assume (proof by contradiction) that h = f ◦ g is not absolutely continu-
ous. Then, there exists ε0 > 0 and a sequence of collections of disjoint intervals
{(ak,n, bk,n)}k=1,...,Kn , n ∈ N, such that

Kn∑
k=1

(bk,n − ak,n) < 2−n and

Kn∑
k=1

(
sup

(ak,n,bk,n)

h− inf
(ak,n,bk,n)

h

)
≥ ε0.

Denote

E :=

∞⋂
m=1

∞⋃
n=m

Kn⋃
k=1

(ak,n, bk,n),

it is clear that λ1(E) = 0 (note that λ1(E) ≤
∑∞
n=m 2−n for all m ∈ N).

Note that we have the following inequality:

φn(y) :=
∑Kn

k=1 1h((ak,n,bk,n))(y) ≤ φ(y) := #{x ∈ [0, 1] : h(x) = y} .
Assume that y ∈ [0, 1] is such that φ(y) < +∞. In this case it is easy to see
that φn(y)→ 0 unless y ∈ h(E): indeed, for such y the equation φ(x) = y has only

finitely many solutions and hence there is x ∈ f−1(y) such that x ∈
⋃Kn

k=1(ak,n, bk,n)
holds for infinitely many indices n, which implies x ∈ E and y ∈ f(E).

The desired contradiction now comes from the following facts with the help of
the dominated convergence theorem:

• by our assumption we have
∫ 1

0
φn(y)dy ≥ ε0 > 0 for all n;

• the majorant φ is summable (since h is of bounded variation);
• φn(y)→ 0 as n→∞ almost everywhere: indeed, λ1({y : φ(y) = +∞}) = 0

since φ ∈ L1([0, 1]), and λ1(h(E)) = 0 since λ1(E) = 0 (as discussed above).

The proof is complete.

Remark. The function #{x : f(x) = y} is known as the Banach indicatrix of f .


