Department of Mathematics, University of Michigan
 Real Analysis Qualifying Exam
 May 09, 2024; Morning Session

Note: all L^{p} spaces appearing below are with respect to the Lebesque measure.
Problem 1. Construct a function $f \in L^{2}(\mathbb{R})$ such that $f \notin L^{p}([a, b])$ for each $-\infty<a<b<+\infty$ and each $p>2$.

Problem 2. Let $E \subset \mathbb{R}$ be a measurable set such that $\lambda_{1}(E)>0$, where λ_{1} stands for the Lebesgue measure on \mathbb{R}.
(a) Prove that there exists an interval $\emptyset \neq I \subset \mathbb{R}$ such that $\lambda_{1}(E \cap I) \geq \frac{3}{4} \lambda_{1}(I)$.
(b) Prove that 0 is an interior point of the set $E-E:=\{x-y \mid x, y \in E\}$.

Problem 3. Let $f \in L^{1}([0,1])$ and let $g:[0,1] \rightarrow \mathbb{R}$ be a bounded increasing function on $[0,1]$ such that for all $0 \leq a<b \leq 1$ one has

$$
\left|\int_{a}^{b} f(x) d x\right|^{2} \leq(g(b)-g(a))(b-a)
$$

Prove that $f \in L^{2}([0,1])$.
Problem 4. Let a sequence of functions $f_{n} \in L^{3}([-1,1])$ be such that $f_{n} \underset{n \rightarrow \infty}{\rightarrow} f$ a.e. on $[-1,1]$ and $\left\|f_{n}\right\|_{3} \leq C<+\infty$. Prove that

$$
\iint_{[-1,1]^{2}} \frac{f_{n}(x) f_{n}(y)}{\left(x^{2}+y^{2}\right)^{1 / 2}} d x d y \underset{n \rightarrow \infty}{\rightarrow} \iint_{[-1,1]^{2}} \frac{f(x) f(y)}{\left(x^{2}+y^{2}\right)^{1 / 2}} d x d y
$$

Problem 5. Let $f, g:[0,1] \rightarrow[0,1]$ be absolutely continuous functions.
(a) Is it always true that the composition $h:=f \circ g$ is absolutely continuous? (Give a proof or provide a justified counterexample.)
(b) Assume, in addition, that $h=f \circ g$ is of bounded variation. Prove that in this case h is absolutely continuous. [Hint: you may start by proving that the function h sends sets of zero measure to sets of zero measure. For the remaining (harder!) part of the argument you can rely (without justification) upon the fact that $\int_{0}^{1} \#\{x: h(x)=y\} \lambda_{1}(d y)$ equals the total variation of h.]

