Department of Mathematics, University of Michigan
 Real Analysis Qualifying Exam
 January 09, 2024; Morning Session

Problem 1: Let $n \in \mathbb{N}$ and n points $x_{1}, \ldots, x_{n} \in[0,1)$ be fixed. Assume that a Lebesgue measurable set $E \subset[0,1)$ satisfies $m(E)>1-3 / n$. Prove that there is $x \in[0,1)$ such that $\left\{x-x_{k}\right\} \in E$ for all indices $k=1, \ldots, n$ except at most two. (Above, $\{x\}:=x-\lfloor x\rfloor$ denotes the fractional part of x.)
Solution: Denote $E_{k}:=\left\{\left\{x+x_{k}\right\}, x \in E\right\}$, the 'periodic shift' of E by x_{k}. Writing $E=\left(E \cap\left[0,1-x_{k}\right)\right) \cup\left(E \cap\left[1-x_{k}, 1\right)\right)$ it is easy to see that $m\left(E_{k}\right)=m(E)$. Clearly, $\left\{x-x_{k}\right\} \in E$ if and only if $x \in E_{k}$. Let $\mathbb{1}_{E_{k}}$ be the characteristic function of E_{k}. If $x \in[0,1)$ does not belong to at least three of the sets E_{k}, then $\sum_{k=1}^{n} \mathbb{1}_{E_{k}}(x) \leq n-3$ and if this happened for all $x \in[0,1)$, then we would have

$$
\int_{0}^{1} \sum_{k=1}^{n} \mathbb{1}_{E_{k}}(x) d x=\sum_{k=1}^{n} m\left(E_{k}\right) \leq n-3
$$

which is a contradiction as $m\left(E_{k}\right)=m(E)>1-\frac{3}{n}$ for all $k=1, \ldots, n$.
Problem 2: Let two functions $f, g:[0,1] \rightarrow[0,1]$ be defined as $f(x):=x^{2}\left|\sin \frac{1}{x}\right|$ (and $f(0):=0$) and $g(x):=\sqrt{x}$. Which of the four functions $f, g, f \circ g$, and $g \circ f$ are absolutely continuous on $[0,1]$?
Solution: Let $f_{1}(x):=x^{2} \sin \left(\frac{1}{x}\right)$ (and $\left.f_{1}(0):=0\right)$. The function f_{1} is differentiable on $(0,1]$ and its derivative $f_{1}^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)$ is bounded. Therefore, f_{1} is absolutely continuous and so is the function $f=\left|f_{1}\right|$.

The function g is also differentiable on $(0,1]$ and its derivative $g^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ belongs to $L^{1}([0,1])$. Therefore, g is absolutely continuous too.

The composition $f \circ g$ is absolutely continuous since both f, g are absolutely continuous and g is monotone. Indeed, as f is absolute continuous, for each $\varepsilon>0$ one can find $\delta=\delta(\varepsilon)>0$ such that $\sum_{k=1}^{n}\left|f\left(v_{k}\right)-f\left(u_{k}\right)\right|<\varepsilon$ for each collection of pairwise disjoint segments $\left[u_{k}, v_{k}\right] \subset[0,1]$ with $\sum_{k=1}^{n}\left(v_{k}-u_{k}\right)<\delta$. Then, since g is absolutely continuous, for each $\delta>0$ one can find $\rho=\rho(\delta)>0$ such that $\sum_{k=1}^{n}\left|g\left(b_{k}\right)-g\left(a_{k}\right)\right|<\delta$ for each collection of pairwise disjoint segments $\left[a_{k}, b_{k}\right] \subset[0,1]$ with $\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\rho$. Since g is monotone, the segments $\left[u_{k}, v_{k}\right]:=\left[g\left(a_{k}\right), g\left(b_{k}\right)\right]$ are also disjoint, which completes the argument.

However, the composition $(g \circ f)(x)=x \cdot \sqrt{\left|\sin \frac{1}{x}\right|}$ is not absolutely continuous. To see this, note that this function vanishes at points $a_{k}=(\pi k)^{-1}, k \in \mathbb{N}$ and $(g \circ f)\left(b_{k}\right)=b_{k}$ at points $b_{k}=\left(\pi\left(k-\frac{1}{2}\right)\right)^{-1}, k \in \mathbb{N}$. As the series $\sum_{k=1}^{\infty} b_{k}$ diverges, the function $g \circ f$ is not of bounded variation and hence not absolutely continuous.

Problem 3: (a) Let $f \in L^{p}([0,1])$ for some $p>3$. Prove that the function $F(x):=\int_{0}^{x}(x-t)^{-\frac{2}{3}} f(t) d t$ is well-defined and bounded on the segment $x \in[0,1]$. Does this statement remain true for $p=3$?
(b) Assume now that $p>\frac{3}{2}$. Prove that the integral $F(x):=\int_{0}^{x}(x-t)^{-\frac{2}{3}} f(t) d t$ converges for almost every $x \in[0,1]$ and that $F \in L^{2}([0,1])$.
Solution: (a) Let $p>3$. We can use Hölder's inequality to write

$$
|F(x)| \leq\left(\int_{0}^{x}(x-t)^{-\frac{2}{3} \cdot \frac{p}{p-1}} d t\right)^{\frac{p-1}{p}}\left(\int_{0}^{x}|f(t)|^{p} d t\right)^{\frac{1}{p}}
$$

The second factor is bounded by $\|f\|_{p}$ and the first one admits (since $\frac{2}{3} \cdot \frac{p}{p-1}<1$) a uniform estimate

$$
\left(\int_{0}^{x}(x-t)^{-\frac{2 p}{3(p-1)}} d t\right)^{\frac{p}{p-1}} \leq\left(\int_{0}^{\infty} y^{-\frac{2 p}{3(p-1)}} d y\right)^{\frac{p}{p-1}}=\left(1-\frac{2 p}{3(p-1)}\right)^{-\frac{p}{p-1}}
$$

If $p=3$, then the integral defining $F(x)$ does not necessarily converge pointwise. For instance, given a point $x_{0} \in(0,1)$ one can consider a function

$$
f(x):=\frac{1}{\left|x-x_{0}\right|^{\frac{1}{3}} \log \left|x-x_{0}\right|}, \quad x \in[0,1] .
$$

The function $x \mapsto\left|x-x_{0}\right|^{-1}\left(\log \left|x-x_{0}\right|\right)^{-3}$ has an integrable singularity at x_{0} (the antiderivative of this function equals $\left.\operatorname{sign}\left(x-x_{0}\right) \cdot\left(\log \left|x-x_{0}\right|\right)^{-2}\right)$, this is why $f \in L^{3}([0,1])$. However, the integral

$$
F\left(x_{0}\right)=\int_{0}^{x_{0}}\left(x_{0}-t\right)^{-\frac{2}{3}} f(t) d t=\int_{0}^{x_{0}}\left(x_{0}-t\right)^{-1}\left(\log \left(x_{0}-t\right)\right)^{-1} d t
$$

diverges (the antiderivative equals $\left.-\log \left|\log \left(x_{0}-t\right)\right|\right)$.
(b). Without loss of generality one can assume that $f \geq 0$: replace f by $|f|$ otherwise. (In particular, if we are able to prove that $F(x)<+\infty$ for almost every x with f replaced by $|f|$, this means that the Lebesgue integral defining $F(x)$ for the original function f converges for almost every x as well.) The key observation is that one can write

$$
\begin{aligned}
\int_{0}^{1}(F(x))^{2} d x & =\int_{0}^{1}\left(\int_{0}^{x}(x-t)^{-\frac{2}{3}} f(t) d t\right)^{2} d x \\
& =\int_{0}^{1}\left(\int_{0}^{x} \int_{0}^{x}(x-t)^{-\frac{2}{3}}(x-s)^{-\frac{2}{3}} f(t) f(s) d t d s\right) d x \\
& =\int_{0}^{x} \int_{0}^{x}\left(\int_{\max \{s, t\}}^{1}(x-t)^{-\frac{2}{3}}(x-s)^{-\frac{2}{3}} d x\right) f(t) f(s) d t d s
\end{aligned}
$$

(Note that we can use Tonelli's theorem even if we do not know that $F(x)<+\infty$ almost everywhere.) The inner integral can be estimated as follows:

$$
\int_{\max \{s, t\}}^{1}(x-t)^{-\frac{2}{3}}(x-s)^{-\frac{2}{3}} d x \leq \int_{0}^{\infty} y^{-\frac{2}{3}}(y+|t-s|)^{-\frac{2}{3}} d y=C \cdot|t-s|^{-\frac{1}{3}}
$$

where $C=\int_{0}^{\infty} y^{-\frac{2}{3}}(y+1)^{-\frac{2}{3}} d y<\infty$. Therefore,

$$
\begin{aligned}
\int_{0}^{1}(F(x))^{2} d x & \leq C \cdot \int_{0}^{1} \int_{0}^{1}|t-s|^{-\frac{1}{3}} f(t) f(s) d t d s \\
& \leq C \cdot\left(\int_{0}^{1} \int_{0}^{1}|t-s|^{-\frac{2}{3}} d t d s\right)^{\frac{1}{2}} \cdot\|f\|_{2}
\end{aligned}
$$

where we used the Cauchy-Schwarz inequality and $\int_{0}^{1} \int_{0}^{1}(f(t))^{2}(f(s))^{2} d t d s=\|f\|_{2}^{2}$ in the second line. Finally, it is easy to see (e.g., by changing the variables t, s to $t-s$ and $t+s)$ that $\int_{0}^{1} \int_{0}^{1}|t-s|^{-\frac{2}{3}} d t d s<+\infty$, which completes the proof. In particular, $F(x)<+\infty$ for almost every $x \in[0,1]$ since $\int_{0}^{1}(F(x))^{2} d x<+\infty$.

Problem 4: Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of measurable functions. Assume that $f_{n}(x) \rightarrow 0$ for almost every $x \in[0,1]$. Prove that one can find a sequence of real numbers C_{n} such that $C_{n} \rightarrow+\infty$ and $C_{n} f_{n}(x) \rightarrow 0$ for almost every $x \in[0,1]$.

Solution: Without loss of generality, one can assume that all functions f_{n} are nonnegative and that the sequence $f_{n}(x)$ is monotone decreasing for each x : replace f_{n} by $\max _{m \geq n}\left|f_{m}(x)\right|$ otherwise. (Note that the maximum is attained since $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ and that the supremum of measurable functions taken over a countable set is again a measurable function.)

For each $\varepsilon>0$ the sets $E_{n}:=\left\{x \in[0,1]: f_{n}(x) \geq \varepsilon\right\}$ are decreasing (i.e., $\left.E_{n} \supset E_{n+1}\right)$ and $m\left(\bigcap_{n=1}^{\infty} E_{n}\right)=0$ since $f_{n}(x) \rightarrow 0$ almost everywhere. Therefore (continuity of the measure, note that $m([0,1])<\infty)$, for each $\varepsilon>0$ and each $\rho>0$ there exists $n=n(\varepsilon, \rho) \in \mathbb{N}$ such that

$$
m\left(\left\{x \in[0,1]: f_{n}(x) \geq \varepsilon\right\}\right) \leq \rho
$$

In particular, one can find an increasing sequence of indices $n_{1}<n_{2}<\ldots$ such that

$$
m\left(\left\{x \in[0,1]: f_{n_{k}}(x)>(k+1)^{-2}\right\}\right) \leq 2^{-k}
$$

(The only important property of this choice of parameters is the summability of the series $\sum_{k=1}^{\infty} 2^{-k}$.) Let us now define $n_{0}:=0$ and

$$
C_{n}:=k \quad \text { if } \quad n_{k-1} \leq n<n_{k}
$$

By construction,

$$
m\left(\left\{x \in[0,1]: C_{n_{k}} f_{n_{k}}(x)>(k+1)^{-1}\right\}\right) \leq 2^{-k}
$$

and hence (Borel-Cantelli's lemma) almost every point $x \in[0,1]$ belongs only to finitely many such sets. This implies that $\lim _{k \rightarrow \infty} C_{n_{k}} f_{n_{k}}(x)=0$ and hence $\lim _{n \rightarrow \infty} C_{n} f_{n}(x)=0$ for almost every $x \in[0,1]$.

Problem 5: Let $n \geq 2$. For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, denote

$$
\begin{aligned}
&\left(M_{\text {cube }} f\right)(x):=\sup _{a>0} \frac{1}{(2 a)^{n}} \int_{\left[x_{1}-a, x_{1}+a\right] \times \ldots\left[x_{n}-a, x_{n}+a\right]}|f(y)| d y \\
&\left(M_{\text {rect }} f\right)(x):=\sup _{a_{1}, \ldots, a_{n}>0} \frac{1}{2^{n} a_{1} \ldots a_{n}} \int_{\left[x_{1}-a_{1}, x_{1}+a_{1}\right] \times \ldots \times\left[x_{n}-a_{n}, x_{n}+a_{n}\right]}|f(y)| d y
\end{aligned}
$$

(a) Use the Hardy-Littlewood maximal inequality to prove that there exists a constant $C_{\text {cube }}>0$ (depending only on $\left.n\right)$ such that $m_{n}\left(\left\{x:\left(M_{\text {cube }} f\right)(x)>\lambda\right\}\right) \leq$ $C_{\text {cube }} \cdot \lambda^{-1}\|f\|_{1}$ for all $\lambda>0$ and $f \in L^{1}\left(\mathbb{R}^{n}\right)$.
(b) Prove that a similar fact for $M_{\text {rect }} f$ does not hold: there is no constant $C_{\text {rect }}>0$ such that $m_{n}\left(\left\{x:\left(M_{\text {rect }} f\right)(x)>\lambda\right\}\right) \leq C_{\text {rect }} \cdot \lambda^{-1}\|f\|_{1}$ for all $\lambda>0$ and $f \in L^{1}\left(\mathbb{R}^{n}\right)$. [Hint: it may be easier to work out the case $n=2$ first.]
Solution: (a) Since $\left[x_{1}-a, x_{1}+a\right] \times \ldots \times\left[x_{n}-a, x_{n}+a\right] \subset B\left(x, 2^{\frac{n}{2}} a\right)$, one has

$$
\frac{1}{(2 a)^{n}} \int_{\left[x_{1}-a, x_{1}+a\right] \times \ldots\left[x_{n}-a, x_{n}+a\right]}|f(y)| d y \leq b_{n} \cdot \frac{1}{m_{n}\left(B\left(x, 2^{\frac{n}{2}} a\right)\right)} \int_{B\left(x, 2^{\frac{n}{2}} a\right)}|f(y)| d y,
$$

where $b_{n}:=m_{n}\left(B\left(x, 2^{\frac{n}{2}} a\right)\right) /(2 a)^{n}$ is a constant depending on n only. (There is no dependence on a since the numerator and the denominator scale in the same way.) Therefore,

$$
m_{n}\left(\left\{x:\left(M_{\text {cube }} f\right)(x)>\lambda\right\}\right) \leq m_{n}\left(\left\{x:(M f)(x)>b_{n}^{-1} \lambda\right\}\right) \leq C b_{n} \cdot \lambda^{-1} \cdot\|f\|_{1}
$$

where C is the constant from the usual Hardy-Littlewood maximal inequality.
(b) For simplicity, let us first assume that $n=2$. Consider $f(x)=\mathbb{1}_{[-1,1]^{2}}(x)$. Clearly, $\|f\|_{1}=4$ and

$$
\left(M_{\mathrm{rect}} f\right)(x) \geq \frac{1}{\left(\left|x_{1}\right|+1\right)\left(\left|x_{2}\right|+1\right)} \text { for all } x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

as one can take $a_{1}:=\left|x_{1}\right|+1$ and $a_{2}:=\left|x_{2}\right|+1$ in the definition of $M_{\text {rect }}$. Hence, for all $\lambda<1$ we have

$$
\begin{aligned}
m_{2}\left(\left\{x:\left(M_{\mathrm{rect}} f\right)(x)>\lambda\right\}\right) & \geq m_{2}\left(\left\{x=\left(x_{1}, x_{2}\right):\left(\left|x_{1}\right|+1\right)\left(\left|x_{2}\right|+1\right)<\lambda^{-1}\right\}\right) \\
& =4 m_{2}\left(\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}:\left(x_{1}+1\right)\left(x_{2}+1\right)<\lambda^{-1}\right) \\
& =4 \int_{0}^{\lambda^{-1}-1}\left(\frac{\lambda^{-1}}{x_{1}+1}-1\right) d x_{1} \\
& =4\left(\lambda^{-1}|\log \lambda|-\lambda^{-1}+1\right)
\end{aligned}
$$

If $\lambda \rightarrow 0$, this lower bound clearly contradicts to the hypothetical uniform estimate $m_{2}\left(\left\{x:\left(M_{\text {rect }} f\right)(x)>\lambda\right\}\right) \leq C_{\text {rect }} \cdot 4 \lambda^{-1}$ from above.

Similar arguments apply if $n>2$ and $f(x)=\mathbb{1}_{[-1,1]^{n}}(x)$. For instance, one can use a crude estimate

$$
\begin{aligned}
& m_{n}\left(\left\{x \in \mathbb{R}_{+}^{n}:\left(x_{1}+1\right) \ldots\left(x_{n}+1\right)<\lambda^{-1}\right\}\right) \\
& \geq m_{2}\left(\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}:\left(x_{1}+1\right)\left(x_{2}+1\right)<2^{-(n-2)} \lambda^{-1}\right\}\right)
\end{aligned}
$$

which is obtained by additionally requiring that $x_{3}, \ldots, x_{n} \in[0,1]$.

