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Problem 1: Let n ∈ N and n points x1, . . . , xn ∈ [0, 1) be fixed. Assume that a
Lebesgue measurable set E ⊂ [0, 1) satisfies m(E) > 1 − 3/n. Prove that there is
x ∈ [0, 1) such that {x − xk} ∈ E for all indices k = 1, . . . , n except at most two.
(Above, {x} := x− bxc denotes the fractional part of x.)

Solution: Denote Ek := {{x+xk}, x ∈ E}, the ‘periodic shift’ of E by xk. Writing
E = (E∩ [0, 1−xk))∪(E∩ [1−xk, 1)) it is easy to see that m(Ek) = m(E). Clearly,
{x−xk} ∈ E if and only if x ∈ Ek. Let 1Ek

be the characteristic function of Ek. If
x ∈ [0, 1) does not belong to at least three of the sets Ek, then

∑n
k=1 1Ek

(x) ≤ n−3
and if this happened for all x ∈ [0, 1), then we would have∫ 1

0

∑n
k=1 1Ek

(x)dx =
∑n
k=1m(Ek) ≤ n− 3,

which is a contradiction as m(Ek) = m(E) > 1− 3
n for all k = 1, . . . , n.

Problem 2: Let two functions f, g : [0, 1] → [0, 1] be defined as f(x) := x2| sin 1
x |

(and f(0) := 0) and g(x) :=
√
x. Which of the four functions f , g, f ◦ g, and g ◦ f

are absolutely continuous on [0, 1]?

Solution: Let f1(x) := x2 sin( 1
x ) (and f1(0) := 0). The function f1 is differentiable

on (0, 1] and its derivative f ′1(x) = 2x sin( 1
x )− cos( 1

x ) is bounded. Therefore, f1 is
absolutely continuous and so is the function f = |f1|.

The function g is also differentiable on (0, 1] and its derivative g′(x) = 1
2
√
x

belongs to L1([0, 1]). Therefore, g is absolutely continuous too.
The composition f ◦ g is absolutely continuous since both f, g are absolutely

continuous and g is monotone. Indeed, as f is absolute continuous, for each ε > 0
one can find δ = δ(ε) > 0 such that

∑n
k=1 |f(vk) − f(uk)| < ε for each collection

of pairwise disjoint segments [uk, vk] ⊂ [0, 1] with
∑n
k=1(vk − uk) < δ. Then,

since g is absolutely continuous, for each δ > 0 one can find ρ = ρ(δ) > 0 such
that

∑n
k=1 |g(bk) − g(ak)| < δ for each collection of pairwise disjoint segments

[ak, bk] ⊂ [0, 1] with
∑n
k=1(bk − ak) < ρ. Since g is monotone, the segments

[uk, vk] := [g(ak), g(bk)] are also disjoint, which completes the argument.

However, the composition (g ◦ f)(x) = x ·
√
| sin 1

x | is not absolutely continuous.

To see this, note that this function vanishes at points ak = (πk)−1, k ∈ N and
(g ◦f)(bk) = bk at points bk = (π(k− 1

2 ))−1, k ∈ N. As the series
∑∞
k=1 bk diverges,

the function g ◦ f is not of bounded variation and hence not absolutely continuous.

Problem 3: (a) Let f ∈ Lp([0, 1]) for some p > 3. Prove that the function

F (x) :=
∫ x
0

(x− t)− 2
3 f(t)dt is well-defined and bounded on the segment x ∈ [0, 1] .

Does this statement remain true for p = 3?

(b) Assume now that p > 3
2 . Prove that the integral F (x) :=

∫ x
0

(x − t)− 2
3 f(t)dt

converges for almost every x ∈ [0, 1] and that F ∈ L2([0, 1]) .

Solution: (a) Let p > 3. We can use Hölder’s inequality to write

|F (x)| ≤
(∫ x

0

(x− t)−
2
3 ·

p
p−1 dt

) p−1
p
(∫ x

0

|f(t)|pdt
) 1

p

.
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The second factor is bounded by ‖f‖p and the first one admits (since 2
3 ·

p
p−1 < 1)

a uniform estimate(∫ x

0

(x− t)−
2p

3(p−1) dt

) p
p−1

≤
(∫ ∞

0

y−
2p

3(p−1) dy

) p
p−1

=

(
1− 2p

3(p− 1)

)− p
p−1

.

If p = 3, then the integral defining F (x) does not necessarily converge pointwise.
For instance, given a point x0 ∈ (0, 1) one can consider a function

f(x) :=
1

|x− x0|
1
3 log |x− x0|

, x ∈ [0, 1].

The function x 7→ |x−x0|−1(log |x−x0|)−3 has an integrable singularity at x0 (the
antiderivative of this function equals sign(x − x0) · (log |x − x0|)−2), this is why
f ∈ L3([0, 1]). However, the integral

F (x0) =
∫ x0

0
(x0 − t)−

2
3 f(t)dt =

∫ x0

0
(x0 − t)−1(log(x0 − t))−1dt

diverges (the antiderivative equals − log | log(x0 − t)|).
(b). Without loss of generality one can assume that f ≥ 0: replace f by |f |
otherwise. (In particular, if we are able to prove that F (x) < +∞ for almost every
x with f replaced by |f |, this means that the Lebesgue integral defining F (x) for
the original function f converges for almost every x as well.) The key observation
is that one can write∫ 1

0

(F (x))2dx =

∫ 1

0

(∫ x

0

(x− t)− 2
3 f(t)dt

)2

dx

=

∫ 1

0

(∫ x

0

∫ x

0

(x− t)− 2
3 (x− s)− 2

3 f(t)f(s)dtds

)
dx

=

∫ x

0

∫ x

0

(∫ 1

max{s,t}
(x− t)− 2

3 (x− s)− 2
3 dx

)
f(t)f(s)dtds .

(Note that we can use Tonelli’s theorem even if we do not know that F (x) < +∞
almost everywhere.) The inner integral can be estimated as follows:∫ 1

max{s,t}
(x− t)− 2

3 (x− s)− 2
3 dx ≤

∫ ∞
0

y−
2
3 (y + |t− s|)− 2

3 dy = C · |t− s|− 1
3 ,

where C =
∫∞
0
y−

2
3 (y + 1)−

2
3 dy <∞. Therefore,∫ 1

0

(F (x))2dx ≤ C ·
∫ 1

0

∫ 1

0

|t− s|− 1
3 f(t)f(s)dtds

≤ C·
(∫ 1

0

∫ 1

0

|t− s|− 2
3 dtds

) 1
2

· ‖f‖2 ,

where we used the Cauchy–Schwarz inequality and
∫ 1

0

∫ 1

0
(f(t))2(f(s))2dtds = ‖f‖22

in the second line. Finally, it is easy to see (e.g., by changing the variables t, s to

t − s and t + s) that
∫ 1

0

∫ 1

0
|t − s|− 2

3 dtds < +∞, which completes the proof. In

particular, F (x) < +∞ for almost every x ∈ [0, 1] since
∫ 1

0
(F (x))2dx < +∞.

Problem 4: Let fn : [0, 1] → R be a sequence of measurable functions. Assume
that fn(x) → 0 for almost every x ∈ [0, 1]. Prove that one can find a sequence of
real numbers Cn such that Cn → +∞ and Cnfn(x)→ 0 for almost every x ∈ [0, 1].
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Solution: Without loss of generality, one can assume that all functions fn are non-
negative and that the sequence fn(x) is monotone decreasing for each x: replace fn
by maxm≥n |fm(x)| otherwise. (Note that the maximum is attained since fn(x)→ 0
as n→∞ and that the supremum of measurable functions taken over a countable
set is again a measurable function.)

For each ε > 0 the sets En := {x ∈ [0, 1] : fn(x) ≥ ε} are decreasing (i.e.,
En ⊃ En+1) and m(

⋂∞
n=1En) = 0 since fn(x) → 0 almost everywhere. Therefore

(continuity of the measure, note that m([0, 1]) <∞), for each ε > 0 and each ρ > 0
there exists n = n(ε, ρ) ∈ N such that

m({x ∈ [0, 1] : fn(x) ≥ ε}) ≤ ρ.

In particular, one can find an increasing sequence of indices n1 < n2 < . . . such
that

m({x ∈ [0, 1] : fnk
(x) > (k + 1)−2}) ≤ 2−k.

(The only important property of this choice of parameters is the summability of
the series

∑∞
k=1 2−k.) Let us now define n0 := 0 and

Cn := k if nk−1 ≤ n < nk .

By construction,

m({x ∈ [0, 1] : Cnk
fnk

(x) > (k + 1)−1}) ≤ 2−k

and hence (Borel–Cantelli’s lemma) almost every point x ∈ [0, 1] belongs only
to finitely many such sets. This implies that limk→∞ Cnk

fnk
(x) = 0 and hence

limn→∞ Cnfn(x) = 0 for almost every x ∈ [0, 1].

Problem 5: Let n ≥ 2. For f ∈ L1(Rn) and x = (x1, . . . , xn) ∈ Rn, denote

(Mcubef)(x) := sup
a>0

1

(2a)n

∫
[x1−a,x1+a]×...[xn−a,xn+a]

|f(y)|dy,

(Mrectf)(x) := sup
a1,...,an>0

1

2na1 . . . an

∫
[x1−a1,x1+a1]×...×[xn−an,xn+an]

|f(y)|dy

(a) Use the Hardy–Littlewood maximal inequality to prove that there exists a
constant Ccube > 0 (depending only on n) such that mn({x : (Mcubef)(x) > λ}) ≤
Ccube · λ−1‖f‖1 for all λ > 0 and f ∈ L1(Rn).

(b) Prove that a similar fact for Mrectf does not hold: there is no constant Crect>0
such that mn({x : (Mrectf)(x) > λ}) ≤ Crect·λ−1‖f‖1 for all λ > 0 and f ∈ L1(Rn).
[ Hint: it may be easier to work out the case n = 2 first. ]

Solution: (a) Since [x1 − a, x1 + a]× . . .× [xn − a, xn + a] ⊂ B(x, 2
n
2 a), one has

1

(2a)n

∫
[x1−a,x1+a]×...[xn−a,xn+a]

|f(y)|dy ≤ bn ·
1

mn(B(x, 2
n
2 a))

∫
B(x,2

n
2 a)

|f(y)|dy,

where bn := mn(B(x, 2
n
2 a))/(2a)n is a constant depending on n only. (There is no

dependence on a since the numerator and the denominator scale in the same way.)
Therefore,

mn({x : (Mcubef)(x) > λ}) ≤ mn({x : (Mf)(x) > b−1n λ}) ≤ Cbn · λ−1 · ‖f‖1,

where C is the constant from the usual Hardy–Littlewood maximal inequality.
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(b) For simplicity, let us first assume that n = 2. Consider f(x) = 1[−1,1]2(x).
Clearly, ‖f‖1 = 4 and

(Mrectf)(x) ≥ 1

(|x1|+ 1)(|x2|+ 1)
for all x = (x1, x2) ∈ R2

as one can take a1 := |x1|+ 1 and a2 := |x2|+ 1 in the definition of Mrect. Hence,
for all λ < 1 we have

m2({x : (Mrectf)(x) > λ}) ≥ m2({x = (x1, x2) : (|x1|+ 1)(|x2|+ 1) < λ−1})
= 4m2((x1, x2) ∈ R2

+ : (x1 + 1)(x2 + 1) < λ−1)

= 4

∫ λ−1−1

0

(
λ−1

x1 + 1
− 1

)
dx1

= 4(λ−1| log λ| − λ−1 + 1)

If λ→ 0, this lower bound clearly contradicts to the hypothetical uniform estimate
m2({x : (Mrectf)(x) > λ}) ≤ Crect · 4λ−1 from above.

Similar arguments apply if n > 2 and f(x) = 1[−1,1]n(x). For instance, one can
use a crude estimate

mn({x ∈ Rn+ : (x1 + 1) . . . (xn + 1) < λ−1})

≥ m2({(x1, x2) ∈ R2
+ : (x1 + 1)(x2 + 1) < 2−(n−2)λ−1}),

which is obtained by additionally requiring that x3, . . . , xn ∈ [0, 1] .


