Department of Mathematics, University of Michigan
 Real Analysis Qualifying Exam
 January 09, 2024; Morning Session

Problem 1: Let $n \in \mathbb{N}$ and n points $x_{1}, \ldots, x_{n} \in[0,1)$ be fixed. Assume that a Lebesgue measurable set $E \subset[0,1)$ satisfies $m(E)>1-3 / n$. Prove that there is $x \in[0,1)$ such that $\left\{x-x_{k}\right\} \in E$ for all indices $k=1, \ldots, n$ except at most two. (Above, $\{x\}:=x-\lfloor x\rfloor$ denotes the fractional part of x.)

Problem 2: Let two functions $f, g:[0,1] \rightarrow[0,1]$ be defined as $f(x):=x^{2}\left|\sin \frac{1}{x}\right|$ (and $f(0):=0$) and $g(x):=\sqrt{x}$. Which of the four functions $f, g, f \circ g$, and $g \circ f$ are absolutely continuous on $[0,1]$?

Problem 3: (a) Let $f \in L^{p}([0,1])$ for some $p>3$. Prove that the function $F(x):=\int_{0}^{x}(x-t)^{-\frac{2}{3}} f(t) d t$ is well-defined and bounded on the segment $x \in[0,1]$. Does this statement remain true for $p=3$?
(b) Assume now that $p>\frac{3}{2}$. Prove that the integral $F(x):=\int_{0}^{x}(x-t)^{-\frac{2}{3}} f(t) d t$ converges for almost every $x \in[0,1]$ and that $F \in L^{2}([0,1])$.

Problem 4: Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of measurable functions. Assume that $f_{n}(x) \rightarrow 0$ for almost every $x \in[0,1]$. Prove that one can find a sequence of real numbers C_{n} such that $C_{n} \rightarrow+\infty$ and $C_{n} f_{n}(x) \rightarrow 0$ for almost every $x \in[0,1]$.

Problem 5: Let $n \geq 2$. For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, denote

$$
\begin{aligned}
& \left(M_{\mathrm{cube}} f\right)(x):=\sup _{a>0} \frac{1}{(2 a)^{n}} \int_{\left[x_{1}-a, x_{1}+a\right] \times \ldots\left[x_{n}-a, x_{n}+a\right]}|f(y)| d y, \\
& \left(M_{\mathrm{rect}} f\right)(x):=\sup _{a_{1}, \ldots, a_{n}>0} \frac{1}{2^{n} a_{1} \ldots a_{n}} \int_{\left[x_{1}-a_{1}, x_{1}+a_{1}\right] \times \ldots \times\left[x_{n}-a_{n}, x_{n}+a_{n}\right]}|f(y)| d y
\end{aligned}
$$

(a) Use the Hardy-Littlewood maximal inequality to prove that there exists a constant $C_{\text {cube }}>0$ (depending only on n) such that $m_{n}\left(\left\{x:\left(M_{\text {cube }} f\right)(x)>\lambda\right\}\right) \leq$ $C_{\text {cube }} \cdot \lambda^{-1}\|f\|_{1}$ for all $\lambda>0$ and $f \in L^{1}\left(\mathbb{R}^{n}\right)$.
(b) Prove that a similar fact for $M_{\text {rect }} f$ does not hold: there is no constant $C_{\text {rect }}>0$ such that $m_{n}\left(\left\{x:\left(M_{\text {rect }} f\right)(x)>\lambda\right\}\right) \leq C_{\text {rect }} \cdot \lambda^{-1}\|f\|_{1}$ for all $\lambda>0$ and $f \in L^{1}\left(\mathbb{R}^{n}\right)$. [Hint: it may be easier to work out the case $n=2$ first.]

