Department of Mathematics, University of Michigan
Real Analysis Qualifying Exam
May 4, 2023, $9.00 \mathrm{am}-12.00 \mathrm{pm}$

Problem 1: Let μ be a finite Borel measure on $[0,1]$ and $f:[0,1] \rightarrow[0, \infty)$ an integrable function with respect to μ. Suppose further that

$$
\int_{A}|f| d \mu \leq \sqrt{\mu(A)} \quad \text { for all Borel sets } A \subset[0,1]
$$

Prove that $|f|^{p}$ is integrable with respect to μ provided $1 \leq p<2$.
Solution: For $n=1,2, \ldots$, let $A_{n}=\left\{x \in(0,1): 2^{n}<f(x) \leq 2^{n+1}\right\}$.

$$
2^{n} \mu\left(A_{n}\right) \leq \int_{A_{n}}|f| d \mu \leq \sqrt{\mu\left(A_{n}\right)}
$$

We conclude that

$$
\int_{[0,1]}|f|^{p} d \mu \leq \mu([0,1])+\sum_{n=1}^{\infty} 2^{(n+1) p} \mu\left(A_{n}\right) \leq \mu([0,1])+\sum_{n=1}^{\infty} 2^{(n+1) p-2 n}<\infty
$$

if $p<2$.
Problem 2: Let $f:(0,1) \rightarrow \mathbb{R}$ be a Lebesgue measurable function which satisfies the inequality $\int_{0}^{1} t^{3} f(t)^{4} d t<\infty$. Prove that

$$
\lim _{x \rightarrow 0} \frac{1}{|\log x|^{3 / 4}} \int_{x}^{1} f(t) d t=0 .
$$

Solution: Using the Hölder inequality we have that

$$
\int_{x}^{1}|f(t)| d t \leq\left[\int_{x}^{1} \frac{d t}{t}\right]^{3 / 4}\left[\int_{0}^{1} t^{3} f(t)^{4} d t\right]^{1 / 4} \leq C|\log x|^{3 / 4}
$$

Generalizing this we have that

$$
\int_{x}^{\delta}|f(t)| d t \leq C_{\delta}|\log x|^{3 / 4}, 0<x<\delta, \quad \text { where } C_{\delta}=\left[\int_{0}^{\delta} t^{3} f(t)^{4} d t\right]^{1 / 4}
$$

By the dominated convergence theorem we have $\lim _{\delta \rightarrow 0} C_{\delta}=0$. The result follows by observing that

$$
\limsup _{x \rightarrow 0} \frac{1}{|\log x|^{3 / 4}} \int_{x}^{1}|f(t)| d t \leq \limsup _{x \rightarrow 0} \frac{1}{|\log x|^{3 / 4}} \int_{\delta}^{1}|f(t)| d t+C_{\delta}=C_{\delta} .
$$

Problem 3: Suppose A is a Lebesgue measurable subset of \mathbb{R} with positive measure $m(A)>0$. Show that for any b with $0<b<m(A)$ there exists a compact subset $K \subset A$ with $m(K)=b$.

Solution: First we reduce to the case when A is bounded. Since $\lim _{N \rightarrow \infty} m([-N, N] \cap$ $A)=m(A)>b$, it follows that there exists $N \geq 1$ such that $m([-N, N] \cap A)>b$. Hence we may replace the possibly unbounded A in the problem with the bounded set $[-N, N] \cap A$. Next by inner regularity of A one has $m(A)=\sup _{F \subset A} m(F)$, where the supremum is taken over all closed subsets F of A. Since A is bounded the sets F are compact. Hence there exists compact $K \subset A$ such that $b<m(K)$. Now define $g:(0, \infty) \rightarrow \mathbb{R}^{+}$by $g(x)=m([-x, x] \cap K)$. By the monotone convergence theorem $g(\cdot)$ is continuous and $\lim _{x \rightarrow 0} g(x)=0, \lim _{x \rightarrow \infty} g(x)=m(K)>b$. The intermediate value theorem implies there exists $x_{b}>0$ such that $g\left(x_{b}\right)=b$. The requisite compact set is then $\left[-x_{b}, x_{b}\right] \cap K$.

Problem 4: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and k an integer such that for all $y \in \mathbb{R}$ the number of distinct solutions to the equation $f(x)=y$ is bounded by k. Prove that the derivative $f^{\prime}(x)$ exists for a.e. $x \in \mathbb{R}$.

Solution: Let $[a, b] \subset \mathbb{R}$ be a compact interval such that $m=\inf _{[a, b]} f(\cdot)$ and $M=\sup _{[a, b]} f(\cdot)$. Let $a_{1}=\inf \{x \in[a, b]: f(x)=m\}$ and $b_{1}=\inf \{x \in[a, b]:$ $f(x)=M\}$. We may assume wlog that $a_{1}<b_{1}$. Now define $g_{1}:[m, M] \rightarrow\left[a_{1}, b_{1}\right]$ by $g_{1}(y)=\inf \left\{x \in\left[a_{1}, b_{1}\right]: f(x)=y\right\}$. The function g_{1} is strictly monotonic increasing and $g_{1}([m, M])=\left[a_{1}, b_{1}\right] \subset[a, b]$. Hence f is strictly monotonic increasing on $\left[a_{1}, b_{1}\right]$. It follows that $f^{\prime}(\cdot)$ is differentiable a.e. on $\left[a_{1}, b_{1}\right]$. We can proceed similarly with f on the intervals $\left[a, a_{1}\right]$ and $\left[b_{1}, b\right]$, until after a finite number of steps we conclude that $f(\cdot)$ is differentiable a.e. on $[a, b]$.

Alternatively we can show by contradiction that $f(\cdot)$ is BV on $[a, b]$. Let $m=$ $\inf _{[a, b]} f(\cdot)$ and $M=\sup _{[a, b]} f(\cdot)$. Since $f(\cdot)$ is not BV on $[a, b]$ there exist $a \leq$ $x_{1}<x_{2}<\cdots<x_{N} \leq b$ such that

$$
\sum_{j=1}^{N-1}\left|f\left(x_{j+1}\right)-f\left(x_{j}\right)\right| \geq k(M-m)+1
$$

Let S_{j} be the set $f\left(\left(x_{j}, x_{j+1}\right)\right), j=1, \ldots, N-1$. Since the open sets $\left(x_{j}, x_{j+1}\right), j=$ $1, \ldots, N-1$ are disjoint the assumption of the problem implies that

$$
\sum_{j=1}^{N-1} \chi_{S_{j}} \leq k
$$

where χ_{S} denotes characteristic function of S. Since $S_{j} \subset[m, M], j=1, \ldots, N-1$ it then follows that

$$
\sum_{j=1}^{N-1}\left|f\left(x_{j+1}\right)-f\left(x_{j}\right)\right| \leq \sum_{j=1}^{N-1} m\left(S_{j}\right) \leq k(M-m)
$$

which contradicts our initial inequality.

Problem 5: Let f be in $L^{1}(\mathbb{R})$ and denote by $M f$ the restricted maximal function

$$
M f(x)=\max _{0<t<1} \frac{1}{2 t} \int_{x-t}^{x+t}\left|f\left(x^{\prime}\right)\right| d x^{\prime}, \quad x \in \mathbb{R}
$$

Prove that

$$
M(f * g)(x) \leq M f * M g(x), \quad x \in \mathbb{R}, f, g \in L^{1}(\mathbb{R})
$$

where the operation $*$ denotes convolution:

$$
f * g(x)=\int_{\mathbb{R}} f(x-y) g(y) d y, \quad x \in \mathbb{R}
$$

Solution: We may assume wlog that f, g are non-negative. Then from the Lebesgue differentiation theorem we have that $M g(x) \geq g(x)$ for a.e. x. Also

$$
\int_{x-t}^{x+t} f\left(x^{\prime}\right) d x^{\prime}=\chi_{t} * f(x), \quad \text { where } \chi_{t}(y)=1 \text { if }|y|<t, \quad \chi_{t}(y)=0 \text { if }|y|>t
$$

Now we use the associative property of convolutions. Thus

$$
\chi_{t} *[f * g](x)=\left[\chi_{t} * f\right] * g(x)
$$

This yields the inequality $M(f * g)(x) \leq M f(x) * g(x)$. We may avoid use of the Lebesgue theorem by observing that

$$
\chi_{t-s} \leq \chi_{t} * \frac{1}{2 s} \chi_{s} \quad \text { for all } 0<s<t
$$

Since the operation of convolution is also commutative we have that

$$
\chi_{t-s} *[f * g](x) \leq\left[\chi_{t} * f\right] *\left[\frac{1}{2 s} \chi_{s} * g\right](x)
$$

