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Problem 1: Let µ be a finite Borel measure on [0, 1] and f : [0, 1] → [0,∞) an
integrable function with respect to µ. Suppose further that∫

A

|f |dµ ≤
√
µ(A) for all Borel sets A ⊂ [0, 1] .

Prove that |f |p is integrable with respect to µ provided 1 ≤ p < 2.

Solution: For n = 1, 2, . . . , let An = {x ∈ (0, 1) : 2n < f(x) ≤ 2n+1}.

2nµ(An) ≤
∫
An

|f | dµ ≤
√
µ(An)

We conclude that∫
[0,1]

|f |pdµ ≤ µ([0, 1]) +
∞∑
n=1

2(n+1)pµ(An) ≤ µ([0, 1]) +
∞∑
n=1

2(n+1)p−2n < ∞

if p < 2.

Problem 2: Let f : (0, 1)→ R be a Lebesgue measurable function which satisfies

the inequality
∫ 1

0
t3f(t)4 dt <∞. Prove that

lim
x→0

1

| log x|3/4

∫ 1

x

f(t) dt = 0 .

Solution: Using the Hölder inequality we have that∫ 1

x

|f(t)| dt ≤
[∫ 1

x

dt

t

]3/4 [∫ 1

0

t3f(t)4 dt

]1/4
≤ C| log x|3/4 .

Generalizing this we have that∫ δ

x

|f(t)| dt ≤ Cδ| log x|3/4 , 0 < x < δ, where Cδ =

[∫ δ

0

t3f(t)4 dt

]1/4
.

By the dominated convergence theorem we have limδ→0Cδ = 0. The result follows
by observing that

lim sup
x→0

1

| log x|3/4

∫ 1

x

|f(t)| dt ≤ lim sup
x→0

1

| log x|3/4

∫ 1

δ

|f(t)| dt+ Cδ = Cδ .

Problem 3: Suppose A is a Lebesgue measurable subset of R with positive
measure m(A) > 0. Show that for any b with 0 < b < m(A) there exists a
compact subset K ⊂ A with m(K) = b.



Solution: First we reduce to the case whenA is bounded. Since limN→∞m([−N,N ]∩
A) = m(A) > b, it follows that there exists N ≥ 1 such that m([−N,N ]∩A) > b.
Hence we may replace the possibly unbounded A in the problem with the bounded
set [−N,N ] ∩ A. Next by inner regularity of A one has m(A) = supF⊂Am(F ),
where the supremum is taken over all closed subsets F of A. Since A is bounded
the sets F are compact. Hence there exists compact K ⊂ A such that b < m(K).
Now define g : (0,∞)→ R+ by g(x) = m([−x, x] ∩K). By the monotone conver-
gence theorem g(·) is continuous and limx→0 g(x) = 0, limx→∞ g(x) = m(K) > b.
The intermediate value theorem implies there exists xb > 0 such that g(xb) = b.
The requisite compact set is then [−xb, xb] ∩K.

Problem 4: Suppose f : R → R is a continuous function and k an integer such
that for all y ∈ R the number of distinct solutions to the equation f(x) = y is
bounded by k. Prove that the derivative f ′(x) exists for a.e. x ∈ R.

Solution: Let [a, b] ⊂ R be a compact interval such that m = inf [a,b] f(·) and
M = sup[a,b] f(·). Let a1 = inf{x ∈ [a, b] : f(x) = m} and b1 = inf{x ∈ [a, b] :
f(x) = M}. We may assume wlog that a1 < b1. Now define g1 : [m,M ]→ [a1, b1]
by g1(y) = inf{x ∈ [a1, b1] : f(x) = y}. The function g1 is strictly monotonic in-
creasing and g1([m,M ]) = [a1, b1] ⊂ [a, b]. Hence f is strictly monotonic increasing
on [a1, b1]. It follows that f ′(·) is differentiable a.e. on [a1, b1]. We can proceed
similarly with f on the intervals [a, a1] and [b1, b], until after a finite number of
steps we conclude that f(·) is differentiable a.e. on [a, b].

Alternatively we can show by contradiction that f(·) is BV on [a, b]. Let m =
inf [a,b] f(·) and M = sup[a,b] f(·). Since f(·) is not BV on [a, b] there exist a ≤
x1 < x2 < · · · < xN ≤ b such that

N−1∑
j=1

|f(xj+1)− f(xj)| ≥ k(M −m) + 1 .

Let Sj be the set f((xj, xj+1)), j = 1, . . . , N−1. Since the open sets (xj, xj+1), j =
1, . . . , N − 1 are disjoint the assumption of the problem implies that

N−1∑
j=1

χSj
≤ k ,

where χS denotes characteristic function of S. Since Sj ⊂ [m,M ], j = 1, . . . , N−1
it then follows that

N−1∑
j=1

|f(xj+1)− f(xj)| ≤
N−1∑
j=1

m(Sj) ≤ k(M −m) ,

which contradicts our initial inequality.



Problem 5: Let f be in L1(R) and denote by Mf the restricted maximal function

Mf(x) = max
0<t<1

1

2t

∫ x+t

x−t
|f(x′)| dx′ , x ∈ R .

Prove that

M(f ∗ g)(x) ≤Mf ∗Mg(x) , x ∈ R, f, g ∈ L1(R),

where the operation ∗ denotes convolution:

f ∗ g(x) =

∫
R
f(x− y)g(y) dy , x ∈ R.

Solution: We may assume wlog that f, g are non-negative. Then from the
Lebesgue differentiation theorem we have that Mg(x) ≥ g(x) for a.e. x. Also∫ x+t

x−t
f(x′) dx′ = χt ∗ f(x) , where χt(y) = 1 if |y| < t, χt(y) = 0 if |y| > t.

Now we use the associative property of convolutions. Thus

χt ∗ [f ∗ g](x) = [χt ∗ f ] ∗ g(x) .

This yields the inequality M(f ∗ g)(x) ≤Mf(x) ∗ g(x). We may avoid use of the
Lebesgue theorem by observing that

χt−s ≤ χt ∗
1

2s
χs for all 0 < s < t .

Since the operation of convolution is also commutative we have that

χt−s ∗ [f ∗ g](x) ≤ [χt ∗ f ] ∗ [
1

2s
χs ∗ g](x) .


