Department of Mathematics, University of Michigan
 Complex Analysis Qualifying Exam
 May 3, 2023, $2.00 \mathrm{pm}-5.00 \mathrm{pm}$

Problem 1: (a) Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disk and $f: \mathbb{D} \rightarrow \mathbb{C}$ be a holomorphic function satisfying $\Re f(z)>0, z \in \mathbb{D}$. Show that $\left|f^{\prime}(0)\right| \leq 2 \Re f(0)$. (b) Suppose instead that $f(\mathbb{D}) \subset \mathbb{D}-\{0\}$. Prove that $\left|f^{\prime}(0)\right| \leq 2 e^{-1}$.

Problem 2: Use contour integration to evaluate the integral

$$
\int_{0}^{\infty} \frac{\log x}{(x+1)^{2} \sqrt{x}} d x
$$

Problem 3: Find a conformal mapping from the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ onto the region $\mathbb{U}=\left\{z=x+i y \in \mathbb{C}: y<x^{2}\right\}$. You may write your solution as a composition of simpler maps. Make sure to explain why each of your simpler maps is conformal.

Problem 4: Let $f(\cdot)$ be a meromorphic function on \mathbb{C} with a finite number of zeros and poles. Assume further there are constants A, C with $A \neq 0$ such that

$$
|f(z)-A| \leq \frac{C}{|z|^{2}} \quad \text { for all large }|z|
$$

(a) Prove that $f(\cdot)$ is a rational function.
(b) Suppose the poles and zeros of $f(\cdot)$ in \mathbb{C} are z_{1}, \ldots, z_{k}, with corresponding multiplicities $m_{1}, \ldots, m_{k} \in \mathbb{Z}$. Show that $m_{1} z_{1}+\cdots m_{k} z_{k}=0$.

Problem 5: Let $\mathcal{D} \subset \mathbb{C}$ be a domain (open and connected), and $f_{n}: \mathcal{D} \rightarrow$ $\mathbb{C}, n=1,2, \ldots$, a sequence of holomorphic functions. Suppose further there is a continuous function $f: \mathcal{D} \rightarrow \mathbb{C}$ such that

$$
\lim _{n \rightarrow \infty} \int_{D}\left|f_{n}(x+i y)-f(x+i y)\right| d x d y=0 \quad \text { on all disks } \mathrm{D} \subset \mathcal{D}
$$

Prove that f is a holomorphic function.

