Department of Mathematics, University of Michigan
Real Analysis Qualifying Exam
January 7, 2023, 2.00 pm-5.00 pm

Problem 1: Let Ei, k = 1,2,...,n, be measurable subsets of [0, 1] such that
each point x € [0, 1] is contained in at least 5 of the sets Fy, k =1,...,n. Prove
there exists k& such that m(Ey) > 5/n.

Solution: Letting xg be the characteristic function of the set F, we have that

> xg, () > 5, x € [0,1]. Integrating this inequality we have then that
Y r—; m(Ex) > 5, whence there exists k such that m(Ey) > 5/n.

Problem 2: For f € L'(R) define a sequence of functions g, : [0,1] - R, n =

1,2,..., by
“ 1
) =Y —fle+VEk), n=12 ..
2 Vi
Prove that the sequence g,, n = 1,2, ..., is convergent in L'([0,1]).

Solution: It is sufficient to show that

m—o0

lim Z ﬁ/o |f(z+VE)| dc = 0 for integer m.

Note that

1 m—+2
/0|f<:c+¢E>|dx s/ F@)ldy i m? <k < (m+1)?

m

Hence

Bl < S <6 [l

m

Now use the fact that f € L'(R).

Problem 3: Let f : R — R be a continuous function which is absolutely con-
tinuous on finite intervals, and g: [0 1] — ]R an integrable function. Define the
function A : R — R by h(x fo (y) dy. Show that h is also absolutely
continuous on finite 1ntervals



Solution: We need to show that for any finite interval I = [a, b] and € > 0, there
exists d > 0 such that for all sets of disjoint intervals {(x;,z}) : i = 1,,...,n}
contained in I one has

Z\h h(z;)] < e 1f2x—xz

To see this we use the fact that f is ac on the interval [a — 1, b], whence for € > 0
there exists 0 > 0 such that

n

Sl —y) — flai—y)l < —— if0<y<l, Yl —x] < 4.
=1

g1l =

The result follows on multiplication by |g(y)| and integrating with respect to
y €[0,1].

Problem 4: Let f,, n=1,2,..., be a sequence of measurable functions on [0, 1]
such that f, — 0 a.e. and f, € L*([0,1]), n = 1,2,..., with sup,>, || falls < oc.
Prove there exists p with 1 < p < oo such that

(x) lim fo(x)g(x) dv = 0 for all g € LP(]0,1]) .

n—oo 0

Solution: For any A > 0 define f,, a(z) = H(A — |fu(2)]) fu(x), where H : R —
{0,1} is the Heaviside function H(z) = 0 if 2 < 0, and H(z) = 1 if z > 0. The
dominated convergence theorem then implies that

n—oo

1
lim fna(x)g(x) de = 0 for all bounded g : [0,1] = R .
0

Letting M = sup,,» || fal[3, we have from the Chebyshev inequality that

1fall3

whence it follows that

A >0,

/Ifn|>A|fn(I)| de = /A m(|ful > 2) d\ < 5

It follows that (%) holds for all bounded g. We can extend this to g € L?([0, 1])
with p = 3/2 by using the Hélder inequality. Thus for g € LP([0,1]) and € > 0
there exists bounded g. such that ||g — g.||, < €. Then

— ge(z)] dx

< |[fallsllg = gellse < Me .



Problem 5: Let f(-) be an integrable function on R™ and M f the corresponding
Hardy-Littlewood maximal function

Mf(x) = su / dy , zeR",
f(z) R>13|BxR‘ en) y)l dy

where B(z, R) denotes the ball centered at x with radius R. Show there is a
constant C),, depending only on n such that

Cr
m{z e R": Mf(z)>s} < — [F ()l dy -
5 Haif(@)>s/2}
Hint: Consider the function fs defined by fs(z) = |f(x)|if |f(z)| > s/2, fi(z) =
otherwise.

Solution: Suppose that M f(x) > s. Then there exists a ball B(x, R) such that

1 S
dy = / L) dy+S > s,
|B:UR|/xR vl |B(z, R)| B(:c,R>| W 2

We conclude that {M f > s} C {Mfs > s/2}. The result follow from the Hardy-
Littlewood inequality applied to f;.



