
Department of Mathematics, University of Michigan
Real Analysis Qualifying Exam
January 7, 2023, 2.00 pm-5.00 pm

Problem 1: Let Ek, k = 1, 2, . . . , n, be measurable subsets of [0, 1] such that
each point x ∈ [0, 1] is contained in at least 5 of the sets Ek, k = 1, . . . , n. Prove
there exists k such that m(Ek) ≥ 5/n.

Solution: Letting χE be the characteristic function of the set E, we have that∑n
k=1 χEk

(x) ≥ 5, x ∈ [0, 1]. Integrating this inequality we have then that∑n
k=1m(Ek) ≥ 5, whence there exists k such that m(Ek) ≥ 5/n.

Problem 2: For f ∈ L1(R) define a sequence of functions gn : [0, 1] → R, n =
1, 2, . . . , by

gn(x) =
n∑

k=1

1√
k
f(x+

√
k) , n = 1, 2, . . .

Prove that the sequence gn, n = 1, 2, . . . , is convergent in L1([0, 1]).

Solution: It is sufficient to show that

lim
m→∞

∞∑
k=m2

1√
k

∫ 1

0

|f(x+
√
k)| dx = 0 for integer m.

Note that∫ 1

0

|f(x+
√
k)| dx ≤

∫ m+2

m

|f(y)| dy if m2 ≤ k < (m+ 1)2 .

Hence
∞∑

k=m2

1√
k

∫ 1

0

|f(x+
√
k)| dx ≤

∞∑
r=m

2r + 1

r

∫ r+2

r

|f(y)| dy ≤ 6

∫ ∞
m

|f(y)| dy .

Now use the fact that f ∈ L1(R).

Problem 3: Let f : R → R be a continuous function which is absolutely con-
tinuous on finite intervals, and g : [0, 1] → R an integrable function. Define the

function h : R→ R by h(x) =
∫ 1

0
f(x− y)g(y) dy. Show that h is also absolutely

continuous on finite intervals.



Solution: We need to show that for any finite interval I = [a, b] and ε > 0, there
exists δ > 0 such that for all sets of disjoint intervals {(xi, x′i) : i = 1, , . . . , n}
contained in I one has

n∑
i=1

|h(x′i)− h(xi)| < ε if
n∑

i=1

[x′i − xi] < δ .

To see this we use the fact that f is ac on the interval [a− 1, b], whence for ε > 0
there exists δ > 0 such that

n∑
i=1

|f(x′i − y)− f(xi − y)| < ε

‖g‖L1

if 0 < y < 1,
n∑

i=1

[x′i − xi] < δ .

The result follows on multiplication by |g(y)| and integrating with respect to
y ∈ [0, 1].

Problem 4: Let fn, n = 1, 2, . . . , be a sequence of measurable functions on [0, 1]
such that fn → 0 a.e. and fn ∈ L3([0, 1]), n = 1, 2, . . . , with supn≥1 ‖fn‖3 < ∞.
Prove there exists p with 1 < p <∞ such that

(∗) lim
n→∞

∫ 1

0

fn(x)g(x) dx = 0 for all g ∈ Lp([0, 1]) .

Solution: For any A > 0 define fn,A(x) = H(A − |fn(x)|)fn(x), where H : R →
{0, 1} is the Heaviside function H(z) = 0 if z < 0, and H(z) = 1 if z > 0. The
dominated convergence theorem then implies that

lim
n→∞

∫ 1

0

fn,A(x)g(x) dx = 0 for all bounded g : [0, 1]→ R .

Letting M = supn≥1 ‖fn‖3, we have from the Chebyshev inequality that

m(|fn| > λ) ≤ ‖fn‖
3
3

λ3
≤ M3

λ3
, λ > 0,

whence it follows that∫
|fn|>A

|fn(x)| dx =

∫ ∞
A

m(|fn| > λ) dλ ≤ M3

2A2
.

It follows that (∗) holds for all bounded g. We can extend this to g ∈ Lp([0, 1])
with p = 3/2 by using the Hölder inequality. Thus for g ∈ Lp([0, 1]) and ε > 0
there exists bounded gε such that ‖g − gε‖p < ε. Then∣∣∣∣∫ 1

0

fn(x)[g(x)− gε(x)] dx

∣∣∣∣ ≤ ‖fn‖3‖g − gε‖3/2 ≤ Mε .



Problem 5: Let f(·) be an integrable function on Rn and Mf the corresponding
Hardy-Littlewood maximal function

Mf(x) = sup
R>0

1

|B(x,R)|

∫
B(x,R)

|f(y)| dy , x ∈ Rn ,

where B(x,R) denotes the ball centered at x with radius R. Show there is a
constant Cn, depending only on n such that

m{x ∈ Rn : Mf(x) > s} ≤ Cn

s

∫
{x:|f(x)|>s/2}

|f(y)| dy .

Hint: Consider the function fs defined by fs(x) = |f(x)| if |f(x)| > s/2, fs(x) = 0
otherwise.

Solution: Suppose that Mf(x) > s. Then there exists a ball B(x,R) such that

1

|B(x,R)|

∫
B(x,R)

|f(y)| dy =
1

|B(x,R)|

∫
B(x,R)

|fs(y)| dy +
s

2
> s .

We conclude that {Mf > s} ⊂ {Mfs > s/2}. The result follow from the Hardy-
Littlewood inequality applied to fs.


