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Problem 1: Use contour integration to evaluate the integral∫ ∞
0

cosx dx

(1 + x2)2
.

Solution: We use the calculus of residues. Let γR be the contour consisting of
the line segment [−R,R] on the real axis combined with the semi-circle of radius
R in the upper half plane. The direction of the contour is counter clockwise. Thus

1

2πi

∫
γR

eiz dz

(1 + z2)2
= Res(f(·), i) , where f(z) =

eiz

(1 + z2)2
.

We have that

f(z) =
eiz

(z − i)2(z + i)2
, eiz = e−1 + ie−1(z − i) +O[(z − i)2] ,

1

(z + i)2
= −1

4
− i

4
(z − i) +O[(z − i)2] ,

whence we conclude that

f(z) =
1

(z − i)2

[
−e
−1

4
− ie−1

2
(z − i) +O[(z − i)2]

]
.

Hence Res(f(·), i) = −ie−1/2. We observe that

lim
R→∞

∫
γR∩{=z=0}

f(z) dz = 2

∫ ∞
0

cosx dx

(1 + x2)2
.

If we show that

lim
R→∞

∫
γR∩{|z|=R}

f(z) dz = 0 ,

then we have from the residue theorem that the value of the integral in the problem
is πe−1/2. Now

|f(z)| ≤ 1

(R− 1)4
, for |z| = R, =z > 0,

∫
γR∩{|z|=R}

|f(z)| |dz| ≤ πR

(R− 1)4
.

Letting R→∞ we conclude the integral of f(·) on the semi-circle converges to 0
as R→∞.

Problem 2: Find a conformal mapping from the quarter disc

{z ∈ D : z = reiθ, r ∈ (0, 1), θ ∈ (0, π/2)}



to the infinite strip

{z ∈ C : z = x+ iy, x ∈ R, y ∈ (0, 1)} .
You may write your solution as a composite of simpler maps.

Solution: If f1(z) = z2 then f1 maps the quarter disc D to the half disk D1 =
{z : |z| < 1, =z > 0}. We can map D1 to a quadrant using a FLT by sending
−1 to 0 and +1 to ∞. Thus we take f2(z) = (1 + z)/(1 − z), which maps D1 to
D2 = {z = reiθ, 0 < θ < π/2}. Next f3(z) = 2

π
log z maps D2 to the infinite strip

0 < =z < 1. The conformal mapping is therefore f = f3 ◦ f2 ◦ f1.

Problem 3: Suppose f : D → C is a holomorphic function on the unit disk D
which satisfies |f(z)| ≤ 3 for all |z| < 1, and f(1/2) = 2.
a) Show that f(0) 6= 0.

b) Extend your result in a) by showing that f(·) has no zeros in the disk |z| < 1/8.

Solution: a). We wish to use the Schwarz lemma, whence we define f1(z) =
f(z)/3, which maps the unit disk D = {z : |z| < 1} to itself. Then f1(1/2) = 2/3.
Next we use conformal mappings on D to construct a function g : D→ D from f
with g(0) = 0. Hence we need FLTs, which are conformal mappings of D, such
that 0→ 1/2 and 2/3→ 0. The relevant mappings are

z → h(z) =
z + 1/2

1 + z/2
, w → k(w) =

w − 2/3

1− 2w/3
.

Then g = k ◦ f1 ◦ h. The Schwarz lemma implies that |g(z)| < |z|, z ∈ D − {0}.
Note that h(−1/2) = 0, k(0) = −2/3. If f(0) = 0 then f1(0) = 0 and so
g(−1/2) = −2/3, contradicting Schwarz. We conclude that f(0) 6= 0.

b) We may extend the argument to the disk by observing that h−1 takes the circle
centered at 0 with radius r to the circle with equation h(z)h̄(z) = r2, which is
given by (

1− r2

4

)(
x2 + y2

)
+ (1− r2)x+

1

4
− r2 = 0 z = x+ iy .

This circle has center [−2(1− r2)/(4− r2), 0] and radius R satisfying

R2 =
4(1− r2)2

(4− r2)2
− 1− 4r2

4− r2
.

The result follows since

2(1− r2)
(4− r2)

+R <
2

3
when r =

1

8
.

Problem 4: Consider a function f(z) that is analytic for z 6= 0 and such that there
exists a sequence zj, j = 1, 2, . . . , such that f(zj) = 0, j ≥ 1, and limj→∞ zj = 0.



a) Prove that f cannot have a pole at z = 0.
b) Show by explicit example that there does exist such f which has an essential
singularity at z = 0.

Solution: a) If f has a pole at z = 0 then f(z) = z−Ng(z) where N ≥ 1 is an
integer and g is analytic on C with g(0) 6= 0. Since g is continuous it follows that
f(zj) 6= 0 for j sufficiently large, a contradiction.

b) An example is

f(z) = exp

[
1

z

]
− 1 , zj =

1

2πji
, j = 1, 2, . . .

Problem 5: Let U be a bounded connected domain in C and f : U → U a
holomorphic function which satisfies f(z0) = z0 and |f ′(z0)| < 1 for some z0 ∈
U . For n = 1, 2, . . . , let f (n) be the composition function defined inductively by
f (1) = f, f (n+1) = f (n) ◦ f . Prove that f (n) converges uniformly to z0 on compact
subsets of U .

Solution: Since |f ′(z0)| < 1 and f ′ is continuous there exists r, δ > 0 such that
|f ′(z)| ≤ 1 − δ if |z − z0| ≤ r. It follows that |f(z) − f(z0)| ≤ (1 − δ)|z − z0| if
z ∈ D(z0, r) = {z : |z−z0| < r}. Since f(z0) = z0 we conclude that f(D(z0, r)) ⊂
D(z0, (1 − δ)r). Proceeding by induction we have further that f (n)(D(z0, r)) ⊂
D(z0, (1 − δ)nr), n = 1, 2, . . . . Letting n → ∞, it follows that f (n) converges
uniformly to z0 on compact subsets of D(z0, r).

We extend the result to compact subsets of U by using Montel’s theorem. Since
U is bounded the family of holomorphic functions f (n), n ≥ 1, is bounded on
every compact subset of U . Suppose the sequence f (n), n ≥ 1, does not converge
uniformly to z0 on a compact subset K ⊂ U . Then there exists a sequence of
points zj ∈ K, j = 1, 2, . . . , and a subsequence f (nj), j = 1, 2, . . . , of the family
f (n), n ≥ 1, such that |f (nj)(zj) − z0| ≥ δ > 0 for some positive δ. By Montel’s
theorem there exists a subsequence f (mk), k = 1, 2, . . . , of f (nj), j = 1, 2, . . . ,
which converges uniformly on all compact subsets of U to a holomorphic function
f (∞). Since the sequence zj, j ≥ 1, lies in the compact set K there exists a
subsequence which has a limit point z∞ ∈ K. We claim that |f (∞)(z∞)− z0| ≥ δ.
This follows from the fact that the derivatives of f (n) are uniformly bounded in a
nbh of z∞, which is a consequence of the Cauchy integral formula. Since we have
shown that f (∞) ≡ z0 in D(z0, r) it follows by analytic continuation that f (∞) ≡ z0
in U , but this contradicts the inequality |f (∞)(z∞)− z0| ≥ δ.


