Department of Mathematics, University of Michigan Analysis Qualifying Exam, August 19, 2021 Morning Session, 9.00 AM-12.00

Problem 1: Let $\mathbb{D} = \{|z| < 1\}$ be the unit disk in \mathbb{C} and $f : \mathbb{D} \to \mathbb{C}$ an analytic function, which extends to a continuous function on the closure $\overline{\mathbb{D}}$ of \mathbb{D} .

- (a) Show that for any $z_0 \in \mathbb{D}$ there is a constant C, independent of $f(\cdot)$, such that the derivative $f'(\cdot)$ satisfies $|f'(z_0)| \leq C \sup_{|z|=1} |f(z)|$.
- (b) Give an example to show that C may not be chosen independent of $z_0 \in \mathbb{D}$.

Solution: (a) From the Cauchy formula and the continuity of the function $f(\cdot)$ at $\partial \mathbb{D}$ we have that

$$f'(z_0) = \frac{1}{2\pi i} \int_{C(z_0,|1-z_0|)} \frac{f(z) dz}{(z-z_0)^2} dz$$

where C(w, r) is the circle with center w and radius r. We conclude that

$$|f'(z_0)| \leq \frac{\sup_{|z|<1} |f(z)|}{|z-z_0|} = \frac{\sup_{|z|=1} |f(z)|}{|z-z_0|},$$

where we have applied the maximum principle for the analytic function $f(\cdot)$. (b) Take $f(z) = z^N$, whence

$$|f'(z_0)| = N|z_0|^{N-1} \sup_{|z|=1} |f(z)|.$$

Letting $|z_0| \to 1$ we conclude that if C is independent of z_0 then $C \ge N$ for all integers $N \ge 1$.

Problem 2: Use contour integration to find the value of the integral

$$\int_0^\infty \frac{dx}{1+x^{2021}}$$

Solution: Let

$$\alpha = \frac{\pi}{2021}.$$

Let R > 1, and consider the contour γ_R consisting of the segment [0, R] followed by the arc $\{Re^{it}, t \in [0, 2\alpha]\}$ followed by the segment $\{te^{2\alpha i}, t \in [R, 0]\}$. The contour γ_R contains a single simple pole of $f(z) = \frac{1}{1+z^{2021}}$, namely $z_0 = e^{\alpha i}$. Hence,

$$\int_{\gamma_R} \frac{dz}{1+z^{2021}} = 2\pi i \cdot \operatorname{Res}(f, z_0) = 2\pi i \cdot \frac{1}{2021z_0^{2020}} = -2\pi i \cdot \frac{1}{2021e^{-\alpha i}} = -2\alpha i e^{\alpha i}.$$

Letting $R \to \infty$, we obtain

$$\left| \int_{\{te^{2\alpha i}, t \in [R,0]\}} \frac{dz}{1+z^{2021}} \right| \le \frac{2\alpha R}{R^{2021}-1} \to 0,$$

and the sum of the integrals over the line segments converges to

$$(1 - e^{2\alpha i}) \int_0^\infty \frac{dx}{1 + x^{2021}}.$$

Therefore,

$$\int_0^\infty \frac{dx}{1+x^{2021}} = -\frac{2\alpha i e^{\alpha i}}{1-e^{2\alpha i}} = \frac{\alpha}{\sin\alpha}.$$

Problem 3: Let z_n , n = 1, 2, ..., be a sequence in \mathbb{C} such that $\lim_{n\to\infty} |z_n| = \infty$ and a_n , n = 1, 2, ..., a sequence in $\mathbb{C} - \{0\}$ satisfying

$$\sum_{n=1}^{\infty} \frac{|a_n|}{|z_n|} < \infty$$

(a) Show that the function $f(\cdot)$ defined by

$$f(z) = \sum_{n=1}^{\infty} \frac{a_n}{z - z_n} , \quad z \in \mathbb{C} ,$$

is a meromorphic function $f : \mathbb{C} \to \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ with simple poles at the points z_n , $n = 1, 2, \ldots$

(b) Does $f(\cdot)$ extend to a meromorphic function $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$? Explain your answer.

Solution: (a) For N = 1, 2, ..., define f_N by

$$f_N(z) = \sum_{n=1}^N \frac{a_n}{z - z_n} ,$$

so f_N is a rational function with simple poles at z_1, \ldots, z_N . Let R > 0 and N be chosen so that $|z_n| \ge 2R$ if n > N. Then

$$|f_N(z) - f(z)| \le 2 \sum_{n=N+1}^{\infty} \frac{|a_n|}{|z_n|}$$
 if $|z| < R$.

By Casorati-Weierstrass theorem $f(\cdot)$ is analytic in $\mathbb{C} \setminus \{z_n; n = 1, 2, ...\}$. Furthermore if $|z_n| < R$ then $\lim_{z \to z_n} (z - z_n) f(z) = \lim_{z \to z_n} (z - z_n) f_N(z) = a_n$. Hence $f(\cdot)$ has a simple pole at z_n with residue $a_n \neq 0$.

(b) The only meromorphic functions $g: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ are rational functions, which have a finite number of singularities. Since $f(\cdot)$ has an infinite number of singularities, it cannot extend to a meromorphic function $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$. **Problem 4:** Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that f(1) = 1 and |f(z)| = 1 if |z| = 1.

(a) Show that

$$\overline{f(z)}f\left(\frac{1}{\overline{z}}\right) = 1 \text{ for } z \in \mathbb{C}$$
.

(b) Conclude that $f(z) = z^n$ for some integer $n \ge 0$.

Solution: (a) We define the function $g(\cdot)$ with domain $\mathbb{C} \setminus \{0\}$ by

$$g(z) = 1 \Big/ f\left(\frac{1}{\overline{z}}\right), \quad |z| > 0$$

Then $g(\cdot)$ is analytic and g(z) = f(z) when |z| = 1. Since the zeros of the function $z \to g(z) - f(z)$ are not isolated we have $g(\cdot) \equiv f(\cdot)$ in $\mathbb{C} \setminus \{0\}$.

(b) Suppose $f(0) \neq 0$. Then (a) implies $f(\cdot)$ is bounded on \mathbb{C} , whence f(1) = 1 and Liouville's theorem implies $f(\cdot) \equiv 1$. Otherwise $f(\cdot)$ has a zero of order $n \geq 1$ at 0. We then replace $f(\cdot)$ by the function $g(z) = f(z)/z^n$ in the previous argument to conclude that $f(z) = z^n$.

Problem 5:

- (a) Show that \mathbb{D} is not conformally equivalent to \mathbb{C} .
- (b) Find an analytic mapping $f : \mathbb{D} \to \mathbb{C}$ such that $f(\mathbb{D}) = \mathbb{C}$.

Solution: (a) Conformal equivalence implies there is an analytic function $f : \mathbb{C} \to \mathbb{D}$, whence $\sup_{z \in \mathbb{C}} |f(z)| \leq 1$. The result follows from Liouville's theorem. (b) We first conformally map \mathbb{D} onto the right half plane by means of the transformation

$$w(z) = \frac{1-z}{1+z}$$
.

The mapping $w \to (w-1)^2$ maps the right half plane onto \mathbb{C} .