Department of Mathematics, University of Michigan Analysis Qualifying Exam, May 14, 2020

Morning Session, 9.00 AM-12.00

Problem 1: Suppose $f(\cdot)$ is holomorphic on the punctured unit disk $\{z \in \mathbb{C} : 0 < |z| < 1\}$ and satisfies the inequality

$$|f(z)| \le \log \frac{1}{|z|}, \quad 0 < |z| < 1.$$

Show that $f(\cdot) \equiv 0$.

Problem 2: Use contour integration to evaluate the integral

$$\int_0^\infty \frac{x^\alpha}{(x+2)^2} dx \quad \text{for } -1 < \alpha < 1 .$$

Sketch the contour you use and show all estimates.

Problem 3: Find the Laurent series expansion about the origin of the function

$$f(z) = \frac{z^2 + 3z + 5}{2z^2 - 5z - 3}$$

which converges in the annulus 1 < |z| < 2.

Problem 4: Is there a conformal mapping from $\mathbb{C}\setminus\{0\}$ onto the punctured disk $\{z\in\mathbb{C}:0<|z|<1\}$? Either prove no such mapping exists or exhibit one.

Problem 5: Let $f: \mathbb{C} \to \mathbb{C}$ be the function $f(z) = z^3 - \exp[z^3 - 4] + 1$.

- (a) Find how many solutions counted according to multiplicity there are to the equation f(z) = 0 in the disk |z| < 3/2.
- (b) Find the number of distinct solutions to f(z) = 0 in |z| < 3/2.

Department of Mathematics, University of Michigan Analysis Qualifying Exam, May 14, 2020

Afternoon Session, 2.00-5.00 PM

Problem 1: Let $E \subset (0,1)$ be a measurable set such that for any interval $(a,b) \subset (0,1)$, there exists an interval $(c,d) \subset (a,b) \setminus E$ with

$$d - c \ge \frac{a}{10}(b - a).$$

Prove that m(E) = 0.

Problem 2: Let $f: \mathbb{R} \to \mathbb{R}$ be a Lebesgue measurable function such that

$$f(y) \le f(x) + (x^2 + y^2)(x - y)$$
 for $-\infty < y < x < \infty$.

Show that the derivative function $x \to f'(x)$ exists a.e. on \mathbb{R} .

Problem 3: Let r_n , n = 1, 2, ..., be an enumeration of the rationals in the interval [0, 1] and consider the function $f : [0, 1] \to \mathbb{R} \cup \infty$ defined by

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} \frac{1}{|x - r_n|^{1/3}}, \quad 0 \le x \le 1.$$

Show that $f \in L^2(0,1)$.

Problem 4: Let f_n , n = 1, 2, ..., be the sequence of functions on $(0, \infty)$ defined by

$$f_n(x) = \frac{1}{n} \left(1 - \frac{x}{n} \right)^n e^x, \quad 0 < x < n, \quad f_n(x) = 0, \quad x \ge n.$$

Prove that the sequence a_n , n = 1, 2, ..., given by

$$a_n = \int_0^\infty f_n(x) dx$$
 converges and identify $a_\infty = \lim_{n \to \infty} a_n$.

Problem 5: Suppose f is a continuously differentiable function on \mathbb{R} satisfying f(0) = 0, $|f(x)| \leq |x|^{-1/2}$, $x \neq 0$. Let g be in $L^1(\mathbb{R})$.

- (a) Show there is a constant C such that $m\{|g| > \alpha\} \le C/\alpha$ for all $\alpha > 0$.
- (b) Show that the function h(x) = f(g(x)) is in $L^1(\mathbb{R})$.