Analysis Qualifying Review

Thursday, May 3, 2018 Morning Session, 9:00 AM - Noon

N.B.: D below denotes the open unit disk $\{z \in \mathbb{C} : |z| < 1\}$.

- (1) Suppose that we have
 - (a) simply-connected domains $\Omega_1, \Omega_2 \subset \mathbb{C}$;
 - (b) distinct points $z_1, w_1 \in \Omega_1$;
 - (c) distinct pints $z_2, w_2 \in \Omega_2$.

Show that there is an analytic map $f: \Omega_1 \to \Omega_2$ satisfying $f(z_1) = z_2, f(w_1) = w_2$ or an analytic map $f: \Omega_2 \to \Omega_1$ satisfying $f(z_2) = z_1, f(w_2) = w_1$ (or both).

- (2) Let Σ be the strip $\{z \in \mathbb{C} : |\operatorname{Im}(z)| < 1\}$, and let F be analytic on Σ , continuous on $\overline{\Sigma}$, and verifying $|F(z)| \leq 1$ on $\partial \Sigma$.
 - (a) Show that |F(z)| is not necessarily ≤ 1 on Σ .
 - (b) Show that if, in addition, F verifies the hypothesis $|F(z)| \leq C e^{b|z|^{\rho}}$, for some constants C, b > 0 and $0 < \rho < 2$, then $|F(z)| \leq 1$ on Σ .

Hint: Consider $F_{\epsilon}(z) := e^{-\epsilon z^2} F(z)$, for all $\epsilon > 0$.

- (3) Let f be an analytic function on D which is continuous on \overline{D} with $|f(z)| \equiv 1$ on ∂D . Show that f is the restriction to D of a rational function on \mathbb{C} .
- (4) Let $D^* := D \setminus \{0\}$ be the punctured unit disk. Let $f: D^* \to \mathbb{C}$ be analytic and injective.
 - (a) Show that $\{f(z): 0 < |z| < 1/2\}$ is not dense in \mathbb{C} .
 - (b) Show that f has a meromorphic extension to D. (Do not quote Picard's theorem here.)
- (5) Suppose that g, h are continuous, \mathbb{C} -valued and nowhere vanishing functions on $\{z \in \mathbb{C} : |z| < 2\}, \{z \in \mathbb{C} : |z| > 1\} \cup \{\infty\}$, respectively. Suppose that f = g/h is analytic on the annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}$.
 - (a) Show that there are continuous, single-valued functions $\log g$ on $\{z \in \mathbb{C} : |z| < 2\}$, and $\log h$ on $\{z \in \mathbb{C} : |z| > 1\} \cup \{\infty\}$.

(continued over)

- (b) Show that $U = \log g \log h$ is analytic on the annulus A.
- (c) Show that f can be written as f(z) = G(z)/H(z) where G, H are nowhere vanishing *analytic* functions on $\{z \in \mathbb{C} : |z| < 2\}, \{z \in \mathbb{C} : |z| > 1\} \cup \{\infty\},$ respectively.

Analysis Qualifying Review

Thursday, May 3, 2018 Afternoon Session, 2:00 - 5:00 PM

- **N.B.:** Lebesgue measure is denoted below by "m".
 - (1) Let (X, \mathcal{A}, μ) be a measure space, and let $f \ge 0$ be in $L^1(X, \mu)$. Let a set function ν be defined on \mathcal{A} by $\nu(A) = \int_A f d\mu$. Show that ν is a measure on \mathcal{A} and that for any ν -integrable function g,

$$\int_X g \, d\nu = \int_X g \cdot f \, d\mu$$

- (2) Provide a (detailed) proof or a (detailed) counterexample to the following statement: If E is a bounded open subset of \mathbb{R} then the boundary of E has Lebesgue measure zero.
- (3) Show that $\{f \in L^2(\mathbb{R}, m) : \int_{\mathbb{R}} |f| = \infty\}$ is dense in $L^2(\mathbb{R}, m)$.
- (4) Let μ be a non-negative measure on the interval (-1, 1) with the property that all open subintervals of (-1, 1) are μ -measurable and $\mu((-1, 1)) = 1$. Let $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous and let $f_n : \mathbb{R} \to \mathbb{R}$ be the function defined by $f_n(x) = \int_{-1}^1 f\left(x + \frac{t}{n}\right) d\mu(t)$.
 - (a) Show that each f_n is uniformly continuous.
 - (b) Show that the f_n converge uniformly to f.
- (5) Let f_n be a sequence of functions in $L^{\infty}([0,1],m)$ satisfying the conditions
 - (i) $||f_n||_{L^{\infty}([0,1],m)} \leq 1$, and
 - (ii) $\int_{[a,b]} f_n dm \to 0$ for all $0 \le a < b \le 1$.
 - (a.) Show that $\int_{[0,1]} f_n g \, dm \to 0$ for all $g \in L^1([0,1],m)$.
 - (b.) Under assumptions (i) and (ii), does $f_n \to 0$ in $L^1([0,1],m)$?