Analysis Qualifying Review. May 4, 2017

Morning Session, 9:00 am - 12:00 pm

1. Let $(f_j)_{j=1}^{\infty}$ be a sequence of measurable functions on a measure space (X, \mathcal{M}, μ) . Suppose that the series

$$\sum_{j=1}^{\infty} \mu\{x \in X \mid |f_j(x)| \ge \epsilon\}$$

converges for every $\epsilon > 0$. Prove that $f_j(x) \to 0$ almost everywhere on X.

Solution Set $E_{j,\epsilon} = \{|f_j| \ge \epsilon\}$ and $A_{\epsilon} = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} E_{j,\epsilon}$. Then A_{ϵ} is measurable and $\limsup_{j} |f_j| \le \epsilon$ on A_{ϵ}^c . Further,

$$\mu(A_{\epsilon}) = \lim_{n \to \infty} \mu(\bigcup_{j=n}^{\infty} E_{j,\epsilon}) \le \lim_{n \to \infty} \sum_{j=n}^{\infty} \mu(E_{j,\epsilon}) = 0.$$

Set $A = \bigcup_{k=1}^{\infty} A_{1/k}$. Then $\mu(A) \leq \sum_{k} \mu(A_k) = 0$ and $\lim_{j \to \infty} f_j(x) = 0$ for $x \in A^c$.

2. Let $E \subset [0,1]$ be the middle-third Cantor set, i.e. $E = [0,1] \setminus \bigcup_{n=1}^{\infty} U_n$, where $U_1 = (1/3, 2/3), U_2 = (1/9, 2/9) \cup (7/9, 8/9)$ etc. Find a function $f \in C^{\infty}(\mathbb{R})$ such that $f \ge 0$ and $\{x \in \mathbb{R} \mid f(x) = 0\} = E$.

Solution: Let g(x) be the distance from a point $x \in \mathbb{R}$ to E. Then g is nonnegative with $\{g = 0\} = E$. Further, g is continuous on \mathbb{R} and C^{∞} on $\mathbb{R} \setminus E$. Now consider the function $\chi \colon \mathbb{R} \to \mathbb{R}$ defined by

$$\chi(t) = \begin{cases} 0 & \text{if } t \le 0\\ e^{-1/t} & \text{if } t > 0 \end{cases}$$

Then $f = \chi \circ g$ has the required properties.

3. Let $\alpha < 1$. Prove the existence of the limit

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n} \right)^n x^{1/n} e^{\alpha x} \, dx,$$

and calculate it.

Solution: Consider the function f_n on $(0, \infty)$ defined by

$$f_n(x) = \left(1 - \frac{x}{n}\right)^n x^{1/n} e^{\alpha x} \cdot \chi_{(0,n)}$$

We have $\lim_{n\to\infty} f_n(x) = e^{-x} \cdot 1 \cdot e^{\alpha x} = e^{-(1-\alpha)x}$ pointwise on \mathbb{R} . To estimate f_n from above, first note that $x^{1/n} \leq n^{1/n} \leq e^{e^{-1}}$ for $x \in (0, n)$, where the last inequality follows by checking that the maximum of the function $y^{1/y}$ on $(0, \infty)$ occurs at y = e. Second, we have

$$\log(1-\frac{x}{n}) \le -\frac{x}{n}$$

for 0 < x < n. Hence

$$(1-\frac{x}{n})^n e^{\alpha x} = \exp(n\log(1-\frac{x}{n}) + \alpha x) \le e^{-(1-\alpha)x}$$

for $0 \le x < n$, so that

$$0 \le f_n(x) \le C e^{-(1-\alpha)x}$$

for all $x \in \mathbb{R}$, where $C = e^{e^{-1}}$. Since $\int_0^\infty e^{-(1-\alpha)x} dx < \infty$, the dominated convergence theorem yields

$$\lim_{n \to \infty} \int_0^\infty f_n(x) dx = \int_0^\infty \lim_{n \to \infty} f_n(x) dx = \int_0^\infty e^{-(1-\alpha)x} dx = \frac{1}{1-\alpha}.$$

4. Let $\beta > 1$ and C > 0. Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ such that $|f(x) - f(y)| \le C|x - y|^{\beta}$ for all $x, y \in \mathbb{R}$.

Solution: For any x, letting $y \to x$ we see that f is differentiable at x, with derivative 0. Thus $f' \equiv 0$, so that f is constant. Conversely, any constant function f clearly satisfies the condition.

5. Construct a function $f \in L^1(\mathbb{R}^n)$ such that $f \notin L^p(U)$ for any open subset $U \subset \mathbb{R}^n$ and any p > 1.

Solution: Pick a dense sequence $(x_k)_{k=1}^{\infty}$ in \mathbb{R}^n . For each k, define a function f_k on \mathbb{R}^n by

$$f_k(x) = \begin{cases} |x|^{-\frac{nk}{k+1}} & \text{if } |x| < 1\\ 0 & \text{otherwise.} \end{cases}$$

Using polar coordinates we see that

$$\int_{\mathbb{R}^n} f_k(x) dx = c'_n \int_0^1 r^{n-1-\frac{nk}{k+1}} dr = c_n(k+1),$$

where the constants c'_n and c_n only depend on the dimension n. A similar computation also shows that f_k^p is not locally integrable at the origin for $p \ge 1 + \frac{1}{k}$. Now set

$$f(x) = \sum_{k=1}^{\infty} 2^{-k} f_k(x - x_k).$$

Then

$$\int_{\mathbb{R}^n} f(x) dx = c_n \sum_{k=1}^{\infty} (k+1) 2^{-k} < \infty.$$

On the other hand, if p > 1 and $U \subset \mathbb{R}^n$ is open, then $x_k \in U$ for infinitely many k, so there exists k with $x_k \in U$ and $p \ge 1 + \frac{1}{k}$. It then follows that $f \notin L^p(U)$.

Analysis Qualifying Review. May 4, 2017

Afternoon Session, 2:00 pm - 5:00 pm

1. Let f(z) be an entire function such that $f(0) = 1 + \pi i$ and $\operatorname{Re} f(z) \ge 1$ when |z| < 1. Compute f'(0).

Solution: The origin is a local maximum of e^{-f} . It follows from the maximum modulus principle that e^{-f} , and hence also f is constant, so f'(0) = 0.

- 2. Let $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ be the unit disc and $a \in \mathbb{D} \setminus \{0\}$ a point. Find all analytic functions f(z) on \mathbb{D} such that
 - |f(z)| < 1 for all $z \in \mathbb{D}$;
 - f(a) = 0 and f(0) = a.

Solution: Recall the Schwarz Lemma: if $g: \mathbb{D} \to \mathbb{D}$ is analytic and g(0) = 0, then $|g(z)| \leq |z|$ for all $z \in \mathbb{D}$. Further, if |g(a)| = |a| for some $a \neq 0$, then $g(z) = \lambda z$, where $|\lambda| = 1$.

Set $g(z) = f(\frac{a-z}{1+\bar{a}z})$. Then $g: \mathbb{D} \to \mathbb{D}$ is analytic, g(0) = 0, and g(a) = a. The Schwartz Lemma gives $g(z) = \lambda z$. Here $\lambda = 1$ since g(a) = a. Thus g(z) = z, i.e. $f(z) = \frac{a-z}{1-\bar{a}z}$.

3. Use residues to compute the integral $\int_0^\infty \frac{\sin tx}{x} dx$ for any $t \in \mathbb{R}$. Show all your steps.

Solution: Set $J(t) = \int_0^\infty \frac{\sin tx}{x} dx$. Clearly J(0) = 0 and J(-t) = -J(t), so we may assume t > 0. In this case, the change of variables $x \to tx$ shows that the integral is independent of t, so we may assume t = 1. Now compute the integral $I = \int_{\gamma} \frac{e^{iz}}{z} dz$, where γ consists of the following parts: $\gamma_1 := \{|z| = \epsilon, \text{Im} z \ge 0\}$; $\gamma_2 := [\epsilon, R], \gamma_3 := [R, R + iR]; \gamma_4 := [R + iR, R - iR]; \text{ and } \gamma_5 := [R - iR, \epsilon]$. The integral I is zero since the integrand has no poles inside γ . The integral over γ_1 tends to $-\pi i$ as $\epsilon \to 0$. The integrals over γ_2 , γ_3 and γ_4 tend to zero as $R \to \infty$. The sum of the integrals over γ_1 and γ_5 is equal to $2 \int_{\epsilon}^R \frac{\sin x}{x} dx$. Thus $J(t) = \pi/2$ for t > 0, J(0) = 0 and $J(t) = -\pi/2$ for t < 0.

4. Prove that for any real number a > 1, the equation $ze^{a-z} = 1$ has exactly one solution in the unit disc, and that this solution is real and positive.

Solution: Set $f(z) = z - e^{z-a}$. When |z| = 1 we have $|e^{z-a}| = e^{\operatorname{Re} z-a} < 1 = |z|$, so by Rouché's theorem, f has the same number of zeros as the function z in the unit disc, namely one. Now f is real-valued on the real interval [0, 1], with $f(0) = -e^{-a} < 0$ and $f(1) = 1 - e^{1-a} > 0$, so, by continuity, f has a zero on the interval (0, 1).

5. Let f(z) be a complex-valued C^{∞} function defined on a connected open subset Ω of the complex plane. Assume that f(z) and $f^2(z)$ are both harmonic (i.e. the real and imaginary parts of these functions are harmonic). Prove that either f(z) or $\overline{f(z)}$ is analytic in Ω .

Solution: A direct computation shows that $\Delta f^2 = 2f\Delta f + 2(f_x^2 + f_y^2)$, so the assumption $\Delta f = \Delta f^2 = 0$ gives $0 = f_x^2 + f_y^2 = (f_x + if_y)(f_x - if_y)$ in Ω . If $f_x - if_y \equiv 0$ in Ω , then \bar{f} is analytic in Ω . On the other hand, if $f_x - if_y \neq 0$, then there exists an open subset $D \subset \Omega$ where $f_x + if_y \neq 0$, and hence $f_x - if_y = 0$ on D. Thus f is analytic on D. We claim that f is in fact analytic on all of Ω . To see this, write f = u + iv. Then u is harmonic on Ω , and hence admits a harmonic conjugate v' on Ω , that is, u + iv' is analytic on Ω . Now v' is unique up to a constant (since Ω is connected) so we may assume v' = v on D. Then v' - v is a real-valued harmonic function on Ω that vanishes on D, and hence must vanish everywhere. Thus f = u + iv = u + iv' is analytic on Ω .