Algebra II QR - January 2024

Problem 1. Let G be a finite simple group which contains an element of order 55. Prove that the index of any proper subgroup of G is at least 16.

Problem 2. Prove that any group of order $455=5 \cdot 7 \cdot 13$ is abelian.
Problem 3. Let $f(x) \in k[x]$ be an irreducible polynomial where k is a field of characteristic 0 with algebraic closure \bar{k}. Prove that there does not exist an element $a \in \bar{k}$ so that $f(a)=f(a+1)=0$.

Problem 4. Let $f(x) \in F[x]$ an irreducible, separable polynomial over a field F, and let E be a splitting field for $f(x)$ over F. Prove that if $\operatorname{Gal}(E / F)$ is abelian, then for any root $a \in E$ of $f(x)$ we have $E=F(a)$.

Problem 5. Prove that $\mathbf{Q}(\sqrt{2+\sqrt{2}})$ is a Galois field extension of \mathbf{Q}, and compute its Galois group.

Hint: The following two facts may be useful.
(1) (Eisenstein's criterion) If $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbf{Z}[x]$ and p is a prime such that p divides all a_{i} but p^{2} does not divide a_{0}, then $f(x)$ is irreducible as an element of $\mathbf{Q}[x]$.
(2) If $\alpha=\sqrt{2+\sqrt{2}}$ and $\beta=\sqrt{2-\sqrt{2}}$, then $\alpha \beta=\sqrt{2}$

