Algebra 2

Identification Number: _____

Each problem occurs on a separate page. If possible, please write your solution on that page and its reverse side. More paper, and paper for scrap work, is available.

Problem 1. Let G be a finite group of order N and let X and Y be two sets on which G acts transitively. Suppose that GCD(|X|, |Y|) = 1. Let G act on $X \times Y$ by $g \cdot (x, y) = (g \cdot x, g \cdot y)$. Show that the action of G on $X \times Y$ is transitive.

Problem 2. Let G be a finite group with $|G| \equiv 2 \mod 4$. Let s and t be two nonidentity elements of G with $s^2 = t^2 = 1$. Show that s and t are conjugate within G.

Problem 3. Let K be the field of rational functions $\mathbb{C}(x_0, x_1, x_2, x_3, x_4)$. Let F be the subfield of K consisting of functions symmetric under the permutations $(x_0, x_1, x_2, x_3 x_4) \mapsto (x_1, x_2, x_3, x_4, x_0)$ and $(x_0, x_1, x_2, x_3, x_4) \mapsto (x_0, x_4, x_3, x_2, x_1)$. How many fields L are there with $F \subseteq L \subseteq K$? (Prove your answer to be correct.)

Problem 4. Let K be a field, let f(x) be a separable polynomial of degree $n \ge 3$ with coefficients in K and let L be a splitting field for f(x) over K, in which f(x) factors as $(x-\theta_1)(x-\theta_2)\cdots(x-\theta_n)$. Suppose that $\operatorname{Gal}(L/K)$ is the alternating group A_n . Show that θ_n lies in the field $K(\theta_1, \theta_2, \ldots, \theta_{n-2})$, but that θ_n does not lie in $K(\theta_1, \theta_2, \ldots, \theta_{n-3})$.

Problem 5. Let $p \ge 5$ be prime. We consider the following 4 subgroups of $\operatorname{GL}_2(\mathbb{F}_p)$ where, in each case, x ranges over \mathbb{F}_p^{\times} and y ranges over \mathbb{F}_p :

$$G_{1,2} = \left\{ \begin{bmatrix} x & y \\ 0 & x^2 \end{bmatrix} \right\} \quad G_{1,3} = \left\{ \begin{bmatrix} x & y \\ 0 & x^3 \end{bmatrix} \right\} \quad G_{2,3} = \left\{ \begin{bmatrix} x^2 & y \\ 0 & x^3 \end{bmatrix} \right\} \quad G_{2,1} = \left\{ \begin{bmatrix} x^2 & y \\ 0 & x \end{bmatrix} \right\}$$

Which of these groups are isomorphic to each other? When you claim that groups are isomorphic, prove them to be so; when you claim that groups are not isomorphic, prove them not to be so.