Algebra 2

Identification Number:

Each problem occurs on a separate page. If possible, please write your solution on that page and its reverse side. More paper, and paper for scrap work, is available.

Problem 1. Let G be a finite group of order N and let X and Y be two sets on which G acts transitively. Suppose that $\mathrm{GCD}(|X|,|Y|)=1$. Let G act on $X \times Y$ by $g \cdot(x, y)=(g \cdot x, g \cdot y)$. Show that the action of G on $X \times Y$ is transitive.

Problem 2. Let G be a finite group with $|G| \equiv 2 \bmod 4$. Let s and t be two nonidentity elements of G with $s^{2}=t^{2}=1$. Show that s and t are conjugate within G.

Problem 3. Let K be the field of rational functions $\mathbb{C}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$. Let F be the subfield of K consisting of functions symmetric under the permutations $\left(x_{0}, x_{1}, x_{2}, x_{3} x_{4}\right) \mapsto$ $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{0}\right)$ and $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{0}, x_{4}, x_{3}, x_{2}, x_{1}\right)$. How many fields L are there with $F \subseteq L \subseteq K$? (Prove your answer to be correct.)

Problem 4. Let K be a field, let $f(x)$ be a separable polynomial of degree $n \geq 3$ with coefficients in K and let L be a splitting field for $f(x)$ over K, in which $f(x)$ factors as $\left(x-\theta_{1}\right)\left(x-\theta_{2}\right) \cdots\left(x-\theta_{n}\right)$. Suppose that $\operatorname{Gal}(L / K)$ is the alternating group A_{n}. Show that θ_{n} lies in the field $K\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-2}\right)$, but that θ_{n} does not lie in $K\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-3}\right)$.

Problem 5. Let $p \geq 5$ be prime. We consider the following 4 subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ where, in each case, x ranges over \mathbb{F}_{p}^{\times}and y ranges over \mathbb{F}_{p} :

$$
G_{1,2}=\left\{\left[\begin{array}{ll}
x & y \\
0 & x^{2}
\end{array}\right]\right\} \quad G_{1,3}=\left\{\left[\begin{array}{ll}
x & y \\
0 & x^{3}
\end{array}\right]\right\} \quad G_{2,3}=\left\{\left[\begin{array}{cc}
x^{2} & y \\
0 & x^{3}
\end{array}\right]\right\} \quad G_{2,1}=\left\{\left[\begin{array}{cc}
x^{2} y \\
0 & x
\end{array}\right]\right\}
$$

Which of these groups are isomorphic to each other? When you claim that groups are isomorphic, prove them to be so; when you claim that groups are not isomorphic, prove them not to be so.

