Problem 1. In the ring $\mathbb{Z} / 2023 \mathbb{Z}$, how many elements obey $x^{17}=1$? We will helpfully tell you that $2023=7 \times 17^{2}$.
Solution. Let $G=(\mathbb{Z} / 2023 \mathbb{Z})^{\times}$be the unit group. Any element satisfying $x^{17}=1$ belongs to G (its inverse is x^{16}). Thus the problem amounts to determining the number of elements of G with order dividing 17. The order of G is

$$
\phi(2023)=(7-1) \cdot\left(17^{2}-17\right)=6 \cdot 16 \cdot 17
$$

It follows from the structure theorem for finite abelian groups that G is isomorphic to $\mathbb{Z} / 17 \mathbb{Z} \times H$ where H has order $6 \cdot 16$. Thus there 17 elements of order dividing 17 in G.

Problem 2. Let $R \subset S$ be integral domains and suppose that $R=S \cap \operatorname{Frac}(R)$ (the intersection is taken inside $\operatorname{Frac}(S)$). Let p be an element of R which is prime in S (meaning that p is not 0 or a unit and that, if p divides $x y$, then either p divides x or p divides y). Show that p is prime in R.

Solution. Suppose x and y are elements of R such that p divides $x y$ in R. Then p divides $x y$ in S, and thus divides either x or y in S; say the former. Thus x / p belongs to $\operatorname{Frac}(R) \cap S$, which we are told is R. Hence p divides x in R. This shows that p is prime in R.

Problem 3. Let V be a finite dimensional complex vector space. A linear operator T on V is called indecomposable if there is no decomposition $V=V_{1} \oplus V_{2}$, with V_{1} and V_{2} non-zero, such that $T\left(V_{i}\right) \subset V_{i}$ for $i=1,2$. Suppose that T and T^{\prime} are indecomposable operators on V with equal trace. Show that there is an invertible linear transformation g of V such that $T=g T^{\prime} g^{-1}$.
Solution. Let $J_{m}(\lambda)$ be an $m \times m$ Jordan block with λ on the diagonal. By the Jordan normal form theorem, there is a basis for V in which the matrix for T has the form

$$
\left(\begin{array}{ccc}
J_{m_{1}}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & J_{m_{r}}\left(\lambda_{r}\right)
\end{array}\right)
$$

We claim that $r=1$, i.e., there is only one Jordan block. Indeed, suppose $r>1$. Let V_{1} be the span of the basis vectors in the first Jordan block, and let V_{2} be the span of the basis vectors in the remaining blocks. Then each V_{i} is non-zero and $T\left(V_{i}\right) \subset V_{i}$, contradicting T being indecomposable. This proves the claim.

We thus see that the matrix for T is a single Jordan block $J_{n}(\lambda)$, where $n=\operatorname{dim}(V)$. Similarly, the matrix for T^{\prime} in an appropriate basis is $J_{n}(\mu)$. Since T and T^{\prime} have equal traces, we have $\lambda=\mu$. Thus there are bases in which T and T^{\prime} have the same matrix, which proves the existence of the element g.

Problem 4. Let A be an invertible real symmetric matrix. Suppose there is a real number C such that $\left|\operatorname{Tr}\left(A^{n}\right)\right| \leq C$ for all integers n. Show that A^{2} is the identity matrix.

Solution. By the spectral theorem, A is diagonalizable with real eigenvalues. Thus, changing our basis if necessary, we may as well assume A is diagonal. Let $\lambda_{1}, \ldots, \lambda_{r}$ be its diagonal
entries; these are non-zero since A is invertible. We are given

$$
\left|\operatorname{Tr}\left(A^{n}\right)\right|=\left|\lambda_{1}^{n}+\cdots+\lambda_{r}^{n}\right| \leq C
$$

for all integers n. This implies $\lambda_{i}= \pm 1$ for all i. Indeed, if $\left|\lambda_{i}\right|>1$ for some i then $\left|\operatorname{Tr}\left(A^{n}\right)\right|$ would be unbounded as n varies over positive even integers (taking even integers ensures that each λ_{i}^{n} is positive, and so there is no cancellation). Similarly, if $\left|\lambda_{i}\right|<1$ then we would find unbounded growth when n is negative and even. We thus see that A is diagonal with diagonal entries ± 1, and so A^{2} is the identity.

Problem 5. Let V be a complex vector space of finite dimension n, and let $T: V \rightarrow V$ be a diagonalizable linear operator of rank r. What is the rank of the operator $\bigwedge^{k}(T): \bigwedge^{k}(V) \rightarrow$ $\bigwedge^{k}(V)$? Give a formula for the rank in terms of n, r, and k.

Solution. Let v_{1}, \ldots, v_{n} be a basis of eigenvectors for T. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues. Reordering if necessary, we assume that $\lambda_{1}, \ldots, \lambda_{r}$ are non-zero and $\lambda_{r+1}, \ldots, \lambda_{n}$ are zero; note that this r is the rank of T, as specified in the problem statement. The space $\bigwedge^{k}(V)$ has a basis consisting of elements $v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}$ where $1 \leq i_{1}<\cdots<i_{k} \leq n$. This is in fact an eigenbasis for $\bigwedge^{k}(T)$; the aforementioned basis vector has eigenvalue $\lambda_{i_{1}} \cdots \lambda_{i_{k}}$. The rank of $\bigwedge^{k}(T)$ is the number of basis vectors with non-zero eigenvalue. These are exactly the basis vectors with $1 \leq i_{1}<\cdots<i_{k} \leq r$. The number of such vectors is $\binom{r}{k}$, and so this is the rank of $\bigwedge^{k}(T)$.

