Algebra 1

Identification Number:

Each problem occurs on a separate page. If possible, please write your solution on that page and its reverse side. More paper, and paper for scrap work, is available.

Problem 1. In the ring $\mathbb{Z} / 2023 \mathbb{Z}$, how many elements obey $x^{17}=1$? We will helpfully tell you that $2023=7 \times 17^{2}$.

Problem 2. Let $R \subset S$ be integral domains and suppose that $R=S \cap \operatorname{Frac}(R)$ (the intersection is taken inside $\operatorname{Frac}(S)$). Let p be an element of R which is prime in S (meaning that p is not 0 or a unit and that, if p divides $x y$, then either p divides x or p divides y). Show that p is prime in R.

Problem 3. Let V be a finite dimensional complex vector space. A linear operator T on V is called indecomposable if there is no decomposition $V=V_{1} \oplus V_{2}$, with V_{1} and V_{2} non-zero, such that $T\left(V_{i}\right) \subset V_{i}$ for $i=1,2$. Suppose that T and T^{\prime} are indecomposable operators on V with equal trace. Show that there is an invertible linear transformation g of V such that $T=g T^{\prime} g^{-1}$.

Problem 4. Let A be an invertible real symmetric matrix. Suppose there is a real number C such that $\left|\operatorname{Tr}\left(A^{n}\right)\right| \leq C$ for all integers n. Show that A^{2} is the identity matrix.

Problem 5. Let V be a complex vector space of finite dimension n, and let $T: V \rightarrow V$ be a diagonalizable linear operator of rank r. What is the rank of the operator $\bigwedge^{k}(T): \bigwedge^{k}(V) \rightarrow$ $\bigwedge^{k}(V)$? Give a formula for the rank in terms of n, r, and k.

