Problem 1. Let GG be a simple group. Let H be a normal subgroup of G x GG. Show that
H is isomorphic to either the trivial group, to G or to G x G.

Solution Let K = HN (G x {1}), since H is normal in G x G we know that K is normal
in G, and is thus either {e} or G. Let L be the projection of H onto the second factor; the
image of a normal subgroup under a surjective homomorphism is normal, so L is normal in
G, and thus L = {e} or G. So we have a short exact sequence 1 - K — H — L — 1 where
each of K and L are either {e} or G. If K = L = {e} then H = {e}; if one of K and L is
trivial and the other is G then H = G, and if K = L = G then H = G x G.

Problem 2. Let p be a prime. Let G be a group such that |G| is divisible by p but not by
p?. Show that G contains at most p — 1 conjugacy classes of elements of order p.

Solution Let ¢ be an element of order p in G. We will show that any other element 7 of
order p is conjugate to one of o, 02, ..., 0P L.

Since p divides |G| and p? does not, the cyclic group (o) is a p-Sylow subgroup of G, as is
(T). So (o) is conjugate to (7). This means that 7 must be conjugate to some generator of
(o), as claimed above.

Problem 3. Let p be a prime. Let G be a subgroup of GLy(Z/pZ) whose order is prime to
p. Let 7 : GLo(Z/p*Z) — GLo(Z/pZ) be the reduction modulo p map. Show that there is a
group homomorphism o : G — GLy(Z/p*Z) such that 7(c(g)) = g for all g € G.

Solution Let 7 : GLy(Z/p*Z) — GLo(Z/pZ) be the reduction map modulo p. Let H =
771(G) and let K be the kernel of 7. Then we have a short exact sequence 1 — K —
H "5 G — 1. Now, |K| = p* and |H| is relatively prime to p. So, by the Schur-Zassenhaus
theorem, this sequence is semidirect. The right splitting o : G — H C GLo(Z/p*Z) is the
required map.

Problem 4. Let ¢ be a primitive 25th root of 1 over Q. Show that the equation X® — 5 has
no solutions over QI[(].

Solution We first note that Q(¢) is Galois over Q with Galois group (Z/25Z)*. (Techni-
cally, this solution will only need that the Galois group is a subgroup of (Z/25Z)*, which is
somewhat easier to show.)

Let K be the splitting field of 2° — 5 over Q. By a standard computation, Gal(K/Q) =
Z/5Z x (Z/5Z)%.

Suppose for the sake of contradiction that x° — 5 has a root a in Q(¢). Then a(®, a¢'?,
ac’®, a¢? are also be roots of 2% — 5 in Q(¢), so z° — 5 splits in Q(¢) and thus K is a
subfield of Q(¢). So Z/5Z x (Z/5Z)* must be a quotient group of (Z/25Z)* (or, if we only
know that the Galois group is a subgroup of (Z/25Z)*, must be a quotient of this subgroup).
Since (Z/257)* (and its subgroups) are abelian, it cannot surject onto the non-abelian group
Z.]57 x (Z/57)*, a contradiction.

Problem 5. Let p be a prime, let k be a field in which p # 0 and let f(z) be the polynomial
Tl — gt ar 2 4o+ a? + o+ 1. Let gi(2)ga(2) - - - g, (@) be the factorization of f(x)
into irreducibles in k[z]. Show that all the polynomials g;(z) have the same degree.

Solution Let ¢, ¢%, ¢3, ..., (P! be the roots of f(z) in the algebraic closure of k. The
Galois group of k(¢)/k is a subgroup of (Z/pZ)*, with a € (Z/pZ)* acting by (* — (%; let
H be this subgroup of (Z/pZ)*. Then (z — ¢*) and (z — ¢?) divide the same factor g (z)



if and only if ¢ and j are in the same Gal(k(¢)/k) orbit or, equivalent, if ¢ and j are in the
same coset of H. So each polynomial g, has degree |H|.



