
Algebra 2
Problem 1. Let G be a finite group and let φ : G → G be a group homomorphism.

For n ≥ 1, let φn : G→ G denote the n-fold composition φ ◦ · · · ◦ φ. Set A =
⋂∞
n=1 Im(φn)

and B =
⋃∞
n=1 Ker(φn). Show that B is normal in G, and G is the semi-direct product of

A and B.

Solution. We have Ker(φ) ⊆ Ker(φ2) ⊆ · · · , and each of these kernels is a normal subgroup
because it is a kernel of a homomorphism, so the union of all these normal subgroups is
normal.

To see that G = AnB, we must additionally check that A∩B = {1} and that G = AB.
We first check that A ∩ B = 1. Choose M large enough that Im(φM ) = Im(φM+1) = · · ·
and Ker(φM ) = Ker(φM+1) = · · · . Let g ∈ A ∩ B. Since g ∈ A, we can write g = φM (h)
for some h ∈ G and, since g ∈ B, we have φ2M (h) = φM (g) = 1, showing that h ∈ B. But
then, by our choice of M , we have φM (h) = 1, so g = 1.

There are several ways to show that G = AB; here is one. Let g ∈ G and choose M as
above. Then φM (g) ∈ A, so we can find some h ∈ G with φ2M (h) = φM (g). Put a = φM (h),
so a ∈ A and we have φM (a) = φM (g). Then φM (a−1g) = 1, so a−1g ∈ B, and we see that
g = a(a−1g) with a ∈ A and a−1g ∈ B.

Problem 2. Show that there is no simple group of order 600.

Solution. Let G be a group of order 600. The number of 5-Sylow subgroups of G must
be a divisor of 24 which is 1 mod 5, and therefore must be either 1 or 6. If there is only
one 5-Sylow, then this 5-Sylow is normal and hence G is not simple. Thus, we need only
consider the possibility that G has six 5-Sylows. Then the action of G on the 5-Sylows gives
a homomorphism φ : G→ S6. But 600 does not divide |S6| = 720, so φ must have a kernel,
and this kernel is a normal subgroup. Thus, the only way G could be simple is if φ is a
trivial homomorphism, but then G does not act transitively on the 5-Sylows, giving a final
contradiction.

Problem 3. Let K be a nontrivial extension field of C. Show that K does not have a
countable basis as a C vector space.

Solution. Let t be an element of K not in C. Since C is algebraically closed, t gen-
erates a purely transcendental extension C(t). We will show that the uncountable set of
elements { 1

t−α}α∈C is linearly independent over C. Indeed, suppose we had a linear relation∑n
i=1 βi

1
t−αi

in the field C(t) for some distinct αi in C and some coefficients βi in C. Then,

multiplying through by
∏n
i=1(t− αi), we see that

n∑
i=1

βi
∏
j 6=i

(t− αj) = 0

in the ring C[t]. Evaluating this polynomial identity at t = αi, we see that βi = 0. So
we have shown that β1 = β2 = · · · = βn = 0, and there are no nontrivial linear relations
between the fractions 1

t−αi
.

Problem 4. Let p and q be distinct prime numbers and let K/Q be a Galois field
extension of degree paqb with a, b ≥ 1. Show that there are linearly disjoint proper subfields
E and F of K such that K is the compositum EF .
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Solution. Let P and Q be a p-Sylow subgroup and a q-Sylow subgroup of G respectively,
and let E and F be their subfields. Since P ∩ Q = {e}, we have EF = K. Since [E : Q]
and [F : Q] are relatively prime, we have E ∩ F = Q.

Problem 5. Let n be a positive integer, let K = Q(x1, x2, . . . , xn), and let F ⊂ K be
the subfield of functions that are symmetric in x1, x2, . . . , xn. Set

p = x21x2 + x22x3 + · · ·+ x2n−1xn + x2nx1
q = x1x

2
2 + x2x

2
3 + · · ·+ xn−1x

2
n + xnx

2
1.

Show that q belongs to F (p), the subfield of K generated by p and F .

Solution. Since F is the fixed field of the action of Sn on K, the extension K/F is Galois
with Galois group Sn. We claim that the subgroup of Sn stabilizing F (p) is 〈(123 · · ·n)〉.
Indeed, the stabilizer of p is 〈(12 · · ·n)〉, so no larger subgroup can stabilize F (p), and every
other element of F (p) is likewise stabilized by 〈(12 · · ·n)〉.

Thus, by the Main Theorem of Galois Theory, F (p) is the fixed field of 〈(12 · · ·n)〉 and,
in particular, as 〈(12 · · ·n)〉 fixes q, we must have q ∈ F (p).
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