Algebra 2
Problem 1. Let G be a finite group and let ¢ : G — G be a group homomorphism.
For n > 1, let ¢": G — G denote the n-fold composition ¢ o---o¢. Set A = —, Im(¢™)
and B = J,~, Ker(¢™). Show that B is normal in G, and G is the semi-direct product of
A and B.

Solution. We have Ker(¢) C Ker(¢?) C - - -, and each of these kernels is a normal subgroup
because it is a kernel of a homomorphism, so the union of all these normal subgroups is
normal.

To see that G = A x B, we must additionally check that AN B = {1} and that G = AB.
We first check that AN B = 1. Choose M large enough that Im(¢*) = Im(pM*1) = ...
and Ker(¢M) = Ker(¢M*1) = .... Let g € AN B. Since g € A, we can write g = ¢ (h)
for some h € G and, since g € B, we have ¢*M (h) = ¢ (g) = 1, showing that h € B. But
then, by our choice of M, we have M (h) =1, s0 g = 1.

There are several ways to show that G = AB; here is one. Let g € G and choose M as
above. Then ¢™ (g) € A, so we can find some h € G with ¢? (h) = ¢M (g). Put a = ¢M (h),
so a € A and we have ¢M (a) = ¢ (g). Then ¢M(a"'g) = 1, so a~'g € B, and we see that
g=ala"tg) witha € A and a~'g € B.

Problem 2. Show that there is no simple group of order 600.

Solution. Let G be a group of order 600. The number of 5-Sylow subgroups of G must
be a divisor of 24 which is 1 mod 5, and therefore must be either 1 or 6. If there is only
one 5-Sylow, then this 5-Sylow is normal and hence G is not simple. Thus, we need only
consider the possibility that G has six 5-Sylows. Then the action of G on the 5-Sylows gives
a homomorphism ¢ : G — Sg. But 600 does not divide |Sg| = 720, so ¢ must have a kernel,
and this kernel is a normal subgroup. Thus, the only way G could be simple is if ¢ is a
trivial homomorphism, but then G' does not act transitively on the 5-Sylows, giving a final
contradiction.

Problem 3. Let K be a nontrivial extension field of C. Show that K does not have a
countable basis as a C vector space.

Solution. Let t be an element of K not in C. Since C is algebraically closed, ¢t gen-
erates a purely transcendental extension C(¢). We will show that the uncountable set of
elements {ﬁ}aec is linearly independent over C. Indeed, suppose we had a linear relation
Dy Biﬁ in the field C(¢) for some distinct «; in C and some coefficients §; in C. Then,
multiplying through by [, (¢t — a;), we see that
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in the ring C[t]. Evaluating this polynomial identity at ¢ = «;, we see that 3; = 0. So
we have shown that 81 = 82 = --- = 3, = 0, and there are no nontrivial linear relations
between the fractions ﬁ

Problem 4. Let p and ¢ be distinct prime numbers and let K/Q be a Galois field
extension of degree p®q® with a,b > 1. Show that there are linearly disjoint proper subfields
E and F of K such that K is the compositum EF.



Solution. Let P and @ be a p-Sylow subgroup and a ¢-Sylow subgroup of G respectively,
and let E and F be their subfields. Since P N Q = {e}, we have EF = K. Since [E : Q]
and [F' : Q] are relatively prime, we have ENF = Q.

Problem 5. Let n be a positive integer, let K = Q(z1,22,...,2,), and let F' C K be

the subfield of functions that are symmetric in z1, xo, ..., T,. Set
p = eyt adws oo +al_jx, +2in
q = 1173+ x0m3 + -+ + Ty 122 + 1,23,

Show that ¢ belongs to F'(p), the subfield of K generated by p and F'.

Solution. Since F is the fixed field of the action of S,, on K, the extension K/F is Galois
with Galois group S,,. We claim that the subgroup of S, stabilizing F'(p) is ((123---n)).
Indeed, the stabilizer of p is ((12---n)), so no larger subgroup can stabilize F(p), and every
other element of F'(p) is likewise stabilized by ((12---n)).

Thus, by the Main Theorem of Galois Theory, F'(p) is the fixed field of ((12---n)) and,
in particular, as ((12---n)) fixes ¢, we must have ¢ € F(p).



