
Algebra 1

Problem 1. Let V be a 2-dimensional complex vector space. What is the largest value of n
for which there are vectors v1, . . . , vn in V such that v⊗31 , . . . , v⊗3n are linearly independent?
Here v⊗3 denotes the element v ⊗ v ⊗ v of V ⊗3 = V ⊗ V ⊗ V .

Solution. Let e, f be a basis for V . Consider an element v = αe+ βf of V . Then

v⊗3 = α3eee+ α2β(eef + efe+ fee) + αβ2(eff + fef + ffe) + β3fff.

Here we have omitted tensor symbols; thus eee means e⊗ e⊗ e. In other words, if we define

g1 = eee, g2 = eef + efe+ ffe, g3 = eff + fef + ffe, g4 = fff

then
v⊗3 = α3g1 + α2βg2 + αβ2g3 + β3g4.

We thus see that v⊗3 belongs to the span of g1, . . . , g4, which is a four dimensional space
(note that the g’s are linearly independent since they have no basis vectors in common).
This shows that n ≤ 4.

In fact, n = 4. To see this, let v1, . . . , v4 be four elements of V and write vi = αie+βif .
Expressing v⊗3i in terms of the g basis, the coefficient vectors are the rows of the following
matrix: 

α3
1 α2

1β1 α1β
2
1 β3

1

α3
2 α2

2β2 α2β
2
2 β3

2

α3
3 α2

3β3 α3β
2
3 β3

3

α3
4 α2

4β4 α4β
2
4 β3

4


The v⊗3i are linearly independent if and only if the above matrix is non-singular. We thus
just need to pick the α’s and β’s to make the determinant non-zero. This is clearly possible,
since the determinant is not the zero polynomial: the coefficient of α3

1α
2
2α3 is non-zero (it

appears in only on term when we expand the determinant). To be definite, we can take

(α1, β1) = (1, 0), (α2, β2) = (1, 1), (α3, β3) = (1,−1), (α4, β4) = (0, 1).

Remark. For any complex vector space V , the vectors v⊗d belong to and span the space
Symd(V ), which we identify with the Sd-invariant vectors of V ⊗d. Thus the maximal n for
which there exists linearly independent vectors v⊗d1 , . . . , v⊗dn is given by n = dim Symd(V ).
Explicitly, this is

(
m+d−1

d

)
where m = dim(V ).

Problem 2. Let X be an n× n matrix with entries in C. Let

V = {Y ∈ Matn×n(C) : XY = Y X},

which is a vector subspace of Matn×n(C). Show that dimC V ≥ n.

Solution 1. Regard Cn as a C[t]-module with t acting by X. Then V is exactly the set
of C[t]-module endomorphisms of Cn. Thus it suffices to prove the following statement: if
M is a finite dimensional C[t]-module then dim EndC[t](M) ≥ dimM . (Throughout this
solution, “dimension” means “dimension as a C-vector space.”)

Suppose that M and N are finite dimensional C[t]-modules. Then EndC[t](M ⊕ N)
contains EndC[t](M) ⊕ EndC[t](N). Thus if the result is true for M and N then it is true
for M ⊕N .
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By the structure theorem, every finite dimensional C[t]-module is a direct sum of finite
dimensional cyclic C[t]-modules. It thus suffices to prove the result for such modules. Now,
if R is any commutative ring and I is an ideal then EndR(R/I) = R/I. In particular, for
M = C[t]/I, with I a non-zero ideal, we see that EndC[t](M) ∼= M , and so the result holds.

Solution 2. Write V (X) for the space V in the problem. Suppose that X is a block matrix

X =

(
A 0
0 B

)
where A has size a×a and B has size b×b, with a+b = n. Then V (X) contains V (A)⊕V (B).
(Here we think of elements of V (A)⊕V (B) as block matrices similar to the above.) We thus
see that if dimV (A) ≥ a and dimV (B) ≥ b then dimV (X) ≥ a+ b = n. Thus it suffices to
prove the result separately for A and B.

Applying this observation several times and appealing to Jordan normal form, we can
reduce to the case where X is a single Jordan block. In this case, the minimal polynomial
of X coincides with the characteristic polynomial and has degree n; we thus see that the el-
ements 1, X,X2, . . . , Xn−1 are linearly independent. Since these obviously belong to V (X),
we see that dimV (X) ≥ n.

Remark. The two solutions are essentially doing the same thing, just in different languages.

Problem 3. Let R = Q[x, y]. Show that there are only finitely many ideals of R which
contain the ideal 〈x, y〉 ∩ 〈x− 1, y − 1〉.

Solution. Let I = 〈x, y〉 and J = 〈x − 1, y − 1〉. It is clear that R/I ∼= Q and R/J ∼= Q.
The sum I + J contains the element x− (x− 1) = 1, and is therefore the unit ideal. Thus,
by the Chinese remainder theorem, we have R/(I ∩ J) ∼= R/I × R/J ∼= Q ×Q. Now, the
ideals of R containing I ∩ J are in bijective correspondence with ideals of R/(I ∩ J); by the
above, these ideals are in bijective correspondence with ideals of Q ×Q. The ring Q ×Q
has exactly four ideals: the zero ideal, the unit ideal, the ideal generated by (1, 0), and the
ideal generated by (0, 1). Thus the result follows.

Problem 4. Let A be a finite abelian group such that a10 = 1 for all a in A. Suppose that
A has exactly 168 elements of order 10. What is the order of A?

Solution. We write A additively; thus we have 10x = 0 for all x ∈ A. By the structure
theorem, we have A ∼= Z/pe11 ×· · ·×Z/perr for prime numbers p1, . . . , pr and positive integers
e1, . . . , er. Since 10x = 0 for all x ∈ A, we must have peii | 10 for all i, and so pi ∈ {2, 5} and
ei = 1. We thus have A ∼= (Z/2)n× (Z/5)m for non-negative integers n and m. Consider an
element x = (y, z) of A. Then x has order 10 if and only if y and z are both non-zero. We
thus see that the number of elements of A of order 10 is (2n−1)(5m−1). We therefore have
(2n − 1)(5m − 1) = 168. The only solution to this equation is (n,m) = (3, 2). (Reason: For
m ≥ 3, the number 5m−1 does not divide 168, so m must be 1 or 2. Since 168/(51−1) = 42
is not of the form 2n − 1, we cannot have m = 1.) Hence A ∼= (Z/2)3 × (Z/5)2 has order
23 · 52 = 200.

Problem 5. Let S = Q[t]. We’ll write elements of S⊕2 as column vectors. Define the
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following S-modules:
M1 = S⊕2/ (S [ t0 ] + S [ 0t ])

M2 = S⊕2/
(
S [ t0 ] + S

[
0
t−1
])

M3 = S⊕2/
(
S
[
t
−1
]

+ S [ 0t ]
)

M4 = S⊕2/
(
S
[
t
−1
]

+ S
[

0
t−1
]) .

Two of these modules are isomorphic to each other. Prove that they are isomorphic, and
show that the other pairs of modules are nonisomorphic.

Solution. We decompose each of the modules according to the structure theorem. Clearly,
we have

M1 = S/tS ⊕ S/tS, M2 = S/tS ⊕ S/(t− 1)S.

We now consider M3. Let e1 = [ 10 ] and e2 = [ 01 ] be the standard basis of S⊕2. Let
v1 = te1 − e2 and v2 = te2, so that M3 is the quotient of S⊕2 by the submodule generated
by v1 and v2. Now, {e1, v1} forms a basis of S⊕2, and we have v2 = t2e1− tv1. We thus find

M3 = (Se1 ⊕ Sv1)/(Sv1 + Sv2) = Se1/(St
2e1) ∼= S/(t2).

Finally, consider M4. Let w1 = te1 − e2 and w2 = (t − 1)e2, so that M4 is the quotient of
S⊕2 by the submodule generated by w1 and w2. As before, {e1, w1} is a basis for S⊕2, and
we have w2 = (t− 1)(te1 − w1). We thus find

M4 = (Se1 ⊕ Sw1)/(Sw1 + S(t− 1)(te1 − w1)) = Se1/(S(t− 1)te1) ∼= S/(t(t− 1)).

We thus see that M2 and M4 are isomorphic (by the Chinese remainder theorem). All other
pairs are non-isomorphic by the uniqueness part of the structure theorem. This can also
be seen directly by considering annihilators: the annihilator of M1 is (t), of M2

∼= M4 is
(t(t− 1)), and of M3 is (t2).
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