Algebra I Exam – May 2021

Notation: \mathbb{C} and \mathbb{Q} denote the fields of complex and rational numbers.

Problem 1. Let I be the ideal of $\mathbb{C}[x, y, z]$ generated by the elements

x + 2y - z, 2x + y + z, (x + y + 3z)(1 + 2x - y + 2z).

Find all maximal ideals that contain I.

Problem 2. Let V be a non-zero complex vector space, let n be a positive integer, let $\alpha \in \bigwedge^n V$, and let v be a non-zero vector in V. Show that $\alpha \wedge v = 0$ if and only if $\alpha = \beta \wedge v$ for some $\beta \in \bigwedge^{n-1} V$.

Problem 3. Let R be a commutative ring containing the field \mathbb{C} . Suppose that

$$0 \to N \to E \to M \to 0$$

is a short exact sequence of R-modules such that N and M are nonisomorphic and one-dimensional over \mathbb{C} . Show that the sequence splits (as a sequence of R-modules).

Problem 4. Let M be an abelian group with a subgroup N such that $M/N \cong \mathbb{Q}$. Show that the natural map $N/kN \to M/kM$ is an isomorphism for any positive integer k.

Problem 5. Let R be a commutative ring and let f_1, f_2, \ldots be an infinite sequence of elements in R. Suppose that for each $N \ge 1$ there exists a field K_N and a unital ring homomorphism $\phi_N \colon R \to K_N$ such that $\phi_N(f_1) = \cdots = \phi_N(f_N) = 0$. ("Unital" just means that $\Phi_N(1) = 1$.) Show that there exists a field K and a ring homomorphism $\phi \colon R \to K$ such that $\phi(f_i) = 0$ for all $i \ge 1$.