Algebra II Exam – May 2021 Notation: \mathbb{C} and \mathbb{R} denote the fields of real and complex numbers, \mathbb{F}_p denotes the finite field with p elements, and S_n and A_n denote the symmetric and alternating groups. **Problem 1.** Give examples of groups G_1 and G_2 of order 8 such that: - (1) G_1 is a semi-direct product of C_2 and C_4 , with C_4 normal, but is not isomorphic to the direct product $C_2 \times C_4$. - (2) G_2 contains a cyclic group of order 4, but is not isomorphic to a semi-direct product of C_2 and C_4 . Here C_n denotes the cyclic group of order n. Be sure to rigorously justify your assertions. **Solution.** Let G_1 be the dihedral group with 8 elements (the group of symmetries of a square). The group of rotations of the square forms a normal copy of C_4 , and any reflection forms a copy of C_2 with trivial intersection with it, so $G_1 = C_2 \ltimes C_4$. Since G_1 is not abelian, it is not the direct product of C_2 and C_4 . Take $G_2 = C_8$. Then G_2 has a normal copy of C_4 , with quotient C_2 , but the only order 2 element of G_2 lies in C_4 , so G_2 is not a semidirect product. (Alternatively, one could use the quaternion 8 group.) **Problem 2.** Let G be a finite group of order n. Let G act on itself by left multiplication, and let $\phi: G \to S_n$ be the homomorphism associated to this action. Show that $\operatorname{im}(\phi) \subset A_n$ if and only if (1) n is odd; or (2) n is even and the 2-Sylow subgroups of G are not cyclic. **Solution.** Let the order of G be $n = 2^k m$, with m odd. First, suppose that n is even and that the 2-Sylow subgroups of G are cyclic. Let g generate a 2-Sylow. Then the action of g on G is by m cycles of length 2^k , so g has sign $(-1)^m = -1$ and is not alternating. We now must show that the action lands in A_n in all other cases. If |G| is odd, then every element of g acts on G by a collection of cycles of odd length, and hence has even sign. Now suppose that |G| is even, and that the 2-sylows of G are not cyclic. Let g be an element of G of order 2^ab , with b odd. Then g^b has order 2^a and hence is contained in a 2-Sylow; since the 2-Sylow's aren't cyclic, we deduce that a < k. Then g acts on G by $2^{k-a}\frac{m}{b}$ many cycles of the same length. $2^{k-a}\frac{m}{b}$ is even, so this permutation is in A_n . **Problem 3.** Let n be a positive integer. Show that $\mathbb{C}(t)/\mathbb{R}(t^n)$ is a Galois extension, and determine its Galois group. Here t is an indeterminate and $\mathbb{C}(t)$ is the rational function field. **Solution.** Let ζ be a primitive n-th root of unity; we claim that the Galois group is generated by the symmetries $\sigma(t) = \zeta t$ and the symmetry $\rho(z) = \overline{z}$ of \mathbb{C} . These generate a group isomorphic to the dihedral group of order 2n, since $\sigma^n = \rho^2 = 1$ and $\rho \sigma \rho^{-1} = \sigma^{-1}$. All of these are clearly field symmetries which preserve the subfield $\mathbb{R}(t)$, and $[\mathbb{C}(t):\mathbb{R}(t^n)]=2n$, so this is all the symmetries and the extension is Galois. **Problem 4.** Suppose that p is a Fermat prime, i.e., p has the form $2^r + 1$ for some positive integer r. Let $a, b \in \mathbb{F}_p^{\times}$. Show that either $a = b^n$ for some integer n, or $b = a^m$ for some integer m. **Solution.** The multiplicative group of a finite field is cyclic, so $\mathbb{F}_p^{\times} \cong C_{2^r}$. The subgroups of C_{2^r} are all of the form C_{2^s} for $0 \leq s \leq r$. Let a and b generate subgroups of orders 2^s and 2^t respectively. Then, if $s \geq t$, we have $b \in \langle a \rangle$ and, if $t \leq s$, we have $a \in \langle b \rangle$. **Problem 5.** Let F be a field of characteristic $\neq 2$, and let a, b, and c be non-zero elements of F such that a, b, c, ab, ac, bc, and abc are all non-squares in F. Show that $F(\sqrt{a}, \sqrt{b}, \sqrt{c})$ is a degree 8 extension of F. **Solution.** Look at the chain of extensions $F \subseteq F(\sqrt{a}) \subseteq F(\sqrt{a}, \sqrt{b}) \subseteq F(\sqrt{a}, \sqrt{b}, \sqrt{c})$. Each extension is either of degree 1 or 2, and we want to show that they are all of degree 2. By assumption, a is not square in F, so $[F(\sqrt{a}):F]=2$. It remains to see that b is not square in $F(\sqrt{a})$ and that c is not square in $F(\sqrt{a}, \sqrt{b})$. Let's first see that b is not square in $F(\sqrt{a})$. Indeed, suppose to the contrary that $(x+y\sqrt{a})^2=b$. Then $x^2+ay^2=b$ and 2xy=0, so either x=0 or y=0. Then we get either $x^2=b$ or $ay^2=b$, so either b or ab is square in F, which we assumed was not true. Now, let us see that c is not square in $F(\sqrt{a}, \sqrt{b})$. At this point, we know that $[F(\sqrt{a}, \sqrt{b}) : F(\sqrt{a})] = 2$, so every element of $F(\sqrt{a}, \sqrt{b})$ can be written uniquely in the form $\alpha + \beta \sqrt{b}$ for α and $\beta \in F(\sqrt{a})$. Suppose, for the sake of contradiction, that $(\alpha + \beta \sqrt{b})^2 = c$ for α and β in $F(\sqrt{a})$. Then, as before, either $\alpha = 0$ or $\beta = 0$, so we deduce that either c or bc is a square in $F(\sqrt{a})$. Then, let $(x + y\sqrt{a})^2$ be c or bc accordingly. As before, we deduce that x=0 or y=0, and so either c, bc, ac or abc is square in F, which we assumed not to be so.