
Algebra II Exam – May 2021

Notation: C and R denote the fields of real and complex numbers,
Fp denotes the finite field with p elements, and Sn and An denote the
symmetric and alternating groups.

Problem 1. Give examples of groups G1 and G2 of order 8 such that:

(1) G1 is a semi-direct product of C2 and C4, with C4 normal, but
is not isomorphic to the direct product C2 × C4.

(2) G2 contains a cyclic group of order 4, but is not isomorphic to
a semi-direct product of C2 and C4.

Here Cn denotes the cyclic group of order n. Be sure to rigorously
justify your assertions.

Solution. Let G1 be the dihedral group with 8 elements (the group of
symmetries of a square). The group of rotations of the square forms a
normal copy of C4, and any reflection forms a copy of C2 with trivial
intersection with it, so G1 = C2 nC4. Since G1 is not abelian, it is not
the direct product of C2 and C4.

Take G2 = C8. Then G2 has a normal copy of C4, with quotient C2,
but the only order 2 element of G2 lies in C4, so G2 is not a semidirect
product. (Alternatively, one could use the quaternion 8 group.)

Problem 2. Let G be a finite group of order n. Let G act on itself by
left multiplication, and let φ : G→ Sn be the homomorphism associated
to this action. Show that im(φ) ⊂ An if and only if (1) n is odd; or (2)
n is even and the 2-Sylow subgroups of G are not cyclic.

Solution. Let the order of G be n = 2km, with m odd.
First, suppose that n is even and that the 2-Sylow subgroups of G

are cyclic. Let g generate a 2-Sylow. Then the action of g on G is by
m cycles of length 2k, so g has sign (−1)m = −1 and is not alternating.

We now must show that the action lands in An in all other cases. If
|G| is odd, then every element of g acts on G by a collection of cycles
of odd length, and hence has even sign. Now suppose that |G| is even,
and that the 2-sylows of G are not cyclic. Let g be an element of G of
order 2ab, with b odd. Then gb has order 2a and hence is contained in a
2-Sylow; since the 2-Sylow’s aren’t cyclic, we deduce that a < k. Then
g acts on G by 2k−am

b
many cycles of the same length. 2k−am

b
is even,

so this permutation is in An.



Problem 3. Let n be a positive integer. Show that C(t)/R(tn) is a
Galois extension, and determine its Galois group. Here t is an indeter-
minate and C(t) is the rational function field.

Solution. Let ζ be a primitive n-th root of unity; we claim that the
Galois group is generated by the symmetries σ(t) = ζt and the symme-
try ρ(z) = z of C. These generate a group isomorphic to the dihedral
group of order 2n, since σn = ρ2 = 1 and ρσρ−1 = σ−1.

All of these are clearly field symmetries which preserve the subfield
R(t), and [C(t) : R(tn)] = 2n, so this is all the symmetries and the
extension is Galois.

Problem 4. Suppose that p is a Fermat prime, i.e., p has the form
2r + 1 for some positive integer r. Let a, b ∈ F×

p . Show that either
a = bn for some integer n, or b = am for some integer m.

Solution. The multiplicative group of a finite field is cyclic, so F×
p
∼=

C2r . The subgroups of C2r are all of the form C2s for 0 ≤ s ≤ r. Let
a and b generate subgroups of orders 2s and 2t respectively. Then, if
s ≥ t, we have b ∈ 〈a〉 and, if t ≤ s, we have a ∈ 〈b〉.

Problem 5. Let F be a field of characteristic 6= 2, and let a, b, and c
be non-zero elements of F such that a, b, c, ab, ac, bc, and abc are all
non-squares in F . Show that F (

√
a,
√
b,
√
c) is a degree 8 extension of

F .

Solution. Look at the chain of extensions F ⊆ F (
√
a) ⊆ F (

√
a,
√
b) ⊆

F (
√
a,
√
b,
√
c). Each extension is either of degree 1 or 2, and we want

to show that they are all of degree 2. By assumption, a is not square in
F , so [F (

√
a) : F ] = 2. It remains to see that b is not square in F (

√
a)

and that c is not square in F (
√
a,
√
b).

Let’s first see that b is not square in F (
√
a). Indeed, suppose to the

contrary that (x+y
√
a)2 = b. Then x2+ay2 = b and 2xy = 0, so either

x = 0 or y = 0. Then we get either x2 = b or ay2 = b, so either b or ab
is square in F , which we assumed was not true.

Now, let us see that c is not square in F (
√
a,
√
b). At this point, we

know that [F (
√
a,
√
b) : F (

√
a)] = 2, so every element of F (

√
a,
√
b)

can be written uniquely in the form α + β
√
b for α and β ∈ F (

√
a).

Suppose, for the sake of contradiction, that (α + β
√
b)2 = c for α and

β in F (
√
a). Then, as before, either α = 0 or β = 0, so we deduce that

either c or bc is a square in F (
√
a). Then, let (x + y

√
a)2 be c or bc



accordingly. As before, we deduce that x = 0 or y = 0, and so either c,
bc, ac or abc is square in F , which we assumed not to be so.


