ALGEBRA I

We use the following standard notation: \mathbb{Z} is the ring of integers, \mathbb{Q} is the field of rational numbers, \mathbb{R} is the field of real numbers, \mathbb{C} is the field of complex numbers, and \mathbb{F}_q is the finite field with q elements (where $q = p^e$ for some prime p and $e \ge 1$).

- (1) Let N be a positive integer with prime factorization $p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ (where the p_i 's are distinct prime numbers, and the exponents e_i are positive). How many solutions to the equation $x^2 = x$ are there in the ring $\mathbb{Z}/N\mathbb{Z}$?
- (2) An element x of a ring is called **nilpotent** if there is a positive integer N with $x^N = 0$. Show that, in a commutative ring, the set of nilpotent elements form an ideal.
- (3) (a) Let $A = \{(x, y, z) \in \mathbb{Z}^3 : x \equiv y \equiv z \mod 3\}$. Give three vectors $\vec{u}_1, \vec{u}_2, \vec{u}_3$ such that $A = \mathbb{Z}\vec{u}_1 \oplus \mathbb{Z}\vec{u}_2 \oplus \mathbb{Z}\vec{u}_2$.
 - (b) Let $B = \{(x, y, z) \in \mathbb{Z}^3 : x + y + z \equiv 0 \mod 3\}$. Give three vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ such that $B = \mathbb{Z}\vec{v_1} \oplus \mathbb{Z}\vec{v_2} \oplus \mathbb{Z}\vec{v_2}$.
 - (c) Describe the abelian group B/A explicitly as a product of one or more cyclic groups.
- (4) Let V be a finite dimensional vector space over a field k. Let $T: V \to V$ be a k-linear map of rank r. Calculate the rank of $\bigwedge^n T: \bigwedge^n V \to \bigwedge^n V$ for all n.
- (5) Show that $\mathbb{Z}[x]$ and $\mathbb{Z}[x, x^{-1}]$ are not isomorphic as rings.

Date: Aug 2021.