
August 2020, Qualifying Review Algebra, Part II

Problem 1. Can the alternating group A2020 be generated by three permutations x, y, and
z satisfying xy = zyx, xz = zx, and yz = zy? Be sure to justify your answer.

Solution. No. Suppose this were the case. The second and third equations imply z
commutes with x and y; obviously z commutes with itself too. Thus since x, y, and z
generate, it follows that z is in the center. But A2020 has trivial center, so z = 1, and so x
and y generate. But the first equation shows that x and y commute, which implies A2020 is
abelian, a contradiction.

Note: in the exam, the first equation had a typo and was xy = zxy. This equation
directly implies z = 1 (simply cancel the xy from each side), and makes the other two
equations redundant. Thus this form of the question simply asks if A2020 can be generated
by two elements. This is true: one can take x to be a 3-cycle and y to be a 2019-cycle.

Problem 2. Let G be the group of all invertible upper-triangular 2× 2 real matrices (with
group law matrix multiplication). Let H be the subset of G consisting of all elements of the
form g2 with g ∈ G. Show that H is a subgroup of G and compute its index.

Solution. We claim that H consists of all matrices of the form(
a b
0 d

)
where a and d are positive real numbers, and b is an arbitrary real number. It is clear that
the square of any element of G has this form. Conversely, if a, d > 0 then(

a b
0 d

)
=

(√
a b/(

√
a+
√
d)

0
√
d

)2

,

where
√
· denotes the positive square root, and so all of these matrices belong to H. It is

now clear that H forms a group. Moreover, one easily sees that the matrices(
±1 0
0 ±1

)
are coset representatives for H in G. Thus [G : H] = 4.

Problem 3. Let a and b be rational numbers such that a2 + b2 = 1, and suppose that a+ bi
is not a square in the field Q(i), where i =

√
−1. Let K = Q(i,

√
a+ bi). Show that K is

Galois over Q and describe its Galois group.

Solution. Observe that √
a− ib =

1√
a+ ib

since a2 + b2 = 1, and thus belongs to K. Let

f(x) = (x2 − (a+ ib))(x2 − (a− ib)) = x4 − 2ax2 + 1.

Thus f(x) has coefficients in Q, and all of its roots belong to K. Moreover, the roots of f
generate K (since one can obtain i from

√
a+ ib), and so K is exactly the splitting field of f .



ThusK/Q is a normal extension, and thus Galois (since we’re in characteristic 0, or because f
is separable). Since [K : Q(i)] = 2 and [Q(i) : Q] = 2 we have [K : Q] = 4, and so Gal(K/Q)
is a group of order 4. Let σ be the unique non-trivial element of Gal(K/Q(i)) ∼= Z/2Z, and
let τ be the restriction of complex conjugation to K (induced by picking an embedding of
K into C). Consider the short exact sequence of groups

1→ Gal(K/Q(i))→ Gal(K/Q)→ Gal(Q(i)/Q)→ 1.

Since σ belongs to and generates Gal(K/Q(i)) and τ maps to a generator of Gal(Q(i)/Q),
it follows that σ and τ generate Gal(K/Q). Thus Gal(K/Q) is a group of order 4 generated
by two elements of order 2, and is therefore isomorphic to (Z/2Z)2.

Problem 4. Let ` be an odd prime number, let p be a prime congruent to 1 modulo `, and
let G = GL2(Fp). Give an example of an `-Sylow subgroup of G, and compute how many
`-Sylow subgroups G has. You may use without proof the fact that the multiplicative group
F×p is cyclic.

Solution. The order of GL2(Fp) is (p2 − 1)(p2 − p) = p(p − 1)2(p + 1), since there are
p2− 1 choices for the first column and p2− p choices for the second. Since ` is an odd prime
dividing p−1, it follows that ` does not divide p or p+ 1. Thus if `r is the maximal power of
` dividing p − 1 then `2r is the maximal power of ` dividing #GL2(Fp). Thus any `-Sylow
has order `2r.

Let θ be a generator for F×p , and write p− 1 = `rk. Then θk is an element of F×p of order
`r. Thus the set H of all matrices of the form(

θnk 0
0 θmk

)
with n,m ∈ Z is an `-Sylow subgroup of GL2(Fp). It is isomorphic to (Z/`rZ)2.

Since all `-Sylows are conjugate, the number of them is the index of the normalizer of any
one of them. Thus we should understand the normalizer of H. Suppose that

g =

(
a b
c d

)
normalizes H. Then for any n,m there exists n′,m′ such that(

a b
c d

)(
θnk 0
0 θmk

)
=

(
θn

′k 0
0 θm

′k

)(
a b
c d

)
,

that is,

θ(n−n
′)ka = a, θ(m−n

′)kb = b, θ(n−m
′)kc = c, θ(m−m

′)kd = d.

Choose n and m distinct modulo `r. Then either n′ or m′ is distinct from n modulo `r. If
n 6= n′ (mod `r) then θ(n−n

′)k 6= 1, and so the first equation shows a = 0; if n 6= m′ (mod `r)
then we similarly find c = 0. A symmetrical argument shows that b = 0 or d = 0. Since g is
invertible, we thus find that g has the form(

a 0
0 d

)
or

(
0 b
c 0

)
.



Conversely, one easily sees that all of these matrices do normalize H. We thus see that the
normalizer of H has order 2(p − 1)2, and therefore has index 1

2
p(p + 1) in GL2(Fp). The

number of `-Sylows is therefore 1
2
p(p+ 1).

Problem 5. Let p be a prime number and let K be a field of characteristic p. Let a, b ∈ K,
with a 6= 0, and let L be the splitting field of xp − ax− b over K. Show that L/K is Galois
and that its Galois group is solvable.

Solution. Let f(x) = xp−ax−b. Then f ′(x) = a (a constant polynomial), and so f(x) and
f ′(x) are coprime. Thus f(x) is a separable polynomial, and so its splitting field is Galois.
This shows that L/K is Galois.

Suppose that x and y are distinct roots of f . Then

0 = f(x)− f(y) = (xp − ax)− (yp − ay) = (x− y)p − a(x− y),

and so (x− y)p−1 = a. This shows that K contains a (p− 1)st root of a. Conversely, if u is a
(p−1)st root of a and x is any root of f then x+u is also a root of f (just reverse the above
reasoning). We thus see that the roots of f are exactly x, x+ u, x+ 2u, . . . , x+ (p− 1)u.

Let K ′ = K(u). Note that K contains all (p− 1)st roots of unity, since these are just F×p .
Thus, by standard Galois theory, K ′ is a Galois extension of K and Gal(K ′/K) is a subgroup
of Z/(p− 1)Z, and hence abelian. By Galois theory, we have a short exact sequence

1→ Gal(L/K ′)→ Gal(L/K)→ Gal(K ′/K)→ 1.

Suppose σ ∈ Gal(L/K ′). Then σ(x) is a root of f , and therefore of the form x + ku for
some k ∈ Z/pZ. Since σ fixes u, we see that σ(x + `u) = x + (k + `)u for any ` ∈ Z/pZ.
Thus, identifying the roots of f with Z/pZ (via ` 7→ x + `u), we see that σ simply induces
addition by k on Z/pZ. It follows that Gal(L/K ′) is isomorphic to a subgroup of Z/pZ, and
is therefore abelian. We thus see that Gal(L/K) is an extension of abelian groups, and is
therefore solvable.
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